Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 383 papers

Using morpholinos to control gene expression.

  • Jon D Moulton‎
  • Current protocols in nucleic acid chemistry‎
  • 2007‎

Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis; nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos.


Using Morpholinos to control gene expression.

  • Jon D Moulton‎ et al.
  • Current protocols in molecular biology‎
  • 2008‎

Morpholino oligonucleotides are stable, uncharged, water-soluble molecules that bind to complementary sequences of RNA, thereby inhibiting mRNA processing, read-through, and protein binding at those sites. Morpholinos are typically used to inhibit translation of mRNA, splicing of pre-mRNA, and maturation of miRNA, although they can also inhibit other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA. However, unmodified Morpholinos do not pass well through plasma membranes and must therefore be delivered into the nuclear or cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by proteins and do not undergo protein-mediated catalysis; nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos.


Using Morpholinos to Control Gene Expression.

  • Jon D Moulton‎
  • Current protocols in nucleic acid chemistry‎
  • 2017‎

Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis-nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos. © 2017 by John Wiley & Sons, Inc.


Vivo-morpholinos induced transient knockdown of physical activity related proteins.

  • David P Ferguson‎ et al.
  • PloS one‎
  • 2013‎

Physical activity is associated with disease prevention and overall wellbeing. Additionally there has been evidence that physical activity level is a result of genetic influence. However, there has not been a reliable method to silence candidate genes in vivo to determine causal mechanisms of physical activity regulation. Vivo-morpholinos are a potential method to transiently silence specific genes. Thus, the aim of this study was to validate the use of Vivo-morpholinos in a mouse model for voluntary physical activity with several sub-objectives. We observed that Vivo-morpholinos achieved between 60-97% knockdown of Drd1-, Vmat2-, and Glut4-protein in skeletal muscle, the delivery moiety of Vivo-morpholinos (scramble) did not influence physical activity and that a cocktail of multiple Vivo-morpholinos can be given in a single treatment to achieve protein knockdown of two different targeted proteins in skeletal muscle simultaneously. Knocking down Drd1, Vmat2, or Glut4 protein in skeletal muscle did not affect physical activity. Vivo-morpholinos injected intravenously alone did not significantly knockdown Vmat2-protein expression in the brain (p = 0.28). However, the use of a bradykinin analog to increase blood-brain-barrier permeability in conjunction with the Vivo-morpholinos significantly (p = 0.0001) decreased Vmat2-protein in the brain with a corresponding later over-expression of Vmat2 coincident with a significant (p = 0.0016) increase in physical activity. We conclude that Vivo-morpholinos can be a valuable tool in determining causal gene-phenotype relationships in whole animal models.


Morpholinos Do Not Elicit an Innate Immune Response during Early Xenopus Embryogenesis.

  • Kitt D Paraiso‎ et al.
  • Developmental cell‎
  • 2019‎

It has recently been reported that a common side effect of translation-blocking morpholino antisense oligonucleotides is the induction of a set of innate immune response genes in Xenopus embryos and that splicing-blocking morpholinos lead to unexpected off-target mis-splicing events. Here, we present an analysis of all publicly available Xenopus RNA sequencing (RNA-seq) data in a reexamination of the effects of translation-blocking morpholinos on the innate immune response. Our analysis does not support the authors' general conclusion, which was based on a limited number of RNA-seq datasets. Moreover, the strong induction of an immune response appears to be specific to the tbxt/tbxt2 morpholinos. The more comprehensive study presented here indicates that using morpholinos for targeted gene knockdowns remains of considerable value for the rapid identification of gene function.


Use of vivo-morpholinos for gene knockdown in the postnatal shark retina.

  • Mariña Rodríguez-Arrizabalaga‎ et al.
  • Experimental eye research‎
  • 2023‎

Work in the catshark Scyliorhinus canicula has shown that the evolutionary origin of postnatal neurogenesis in vertebrates is earlier than previously thought. Thus, the catshark can serve as a model of interest to understand postnatal neurogenic processes and their evolution in vertebrates. One of the best characterized neurogenic niches of the catshark CNS is found in the peripheral region of the retina. Unfortunately, the lack of genetic tools in sharks limits the possibilities to deepen in the study of genes involved in the neurogenic process. Here, we report a method for gene knockdown in the juvenile catshark retina based on the use of Vivo-Morpholinos. To establish the method, we designed Vivo-Morpholinos against the proliferation marker PCNA. We first evaluated the possible toxicity of 3 different intraocular administration regimes. After this optimization step, we show that a single intraocular injection of the PCNA Vivo-Morpholino decreases the expression of PCNA in the peripheral retina, which leads to reduced mitotic activity in this region. This method will help in deciphering the role of other genes potentially involved in postnatal neurogenesis in this animal model.


Induction of interferon-stimulated genes and cellular stress pathways by morpholinos in zebrafish.

  • Jason K H Lai‎ et al.
  • Developmental biology‎
  • 2019‎

The phenotypes caused by morpholino-mediated interference of gene function in zebrafish are often not observed in the corresponding mutant(s). We took advantage of the availability of a relatively large collection of transcriptomic datasets to identify common signatures that characterize morpholino-injected animals (morphants). In addition to the previously reported activation of tp53 expression, we observed increased expression of the interferon-stimulated genes (ISGs), isg15 and isg20, the cell death pathway gene casp8, and other cellular stress response genes including phlda3, mdm2 and gadd45aa. Studies involving segmentation stage embryos were more likely to show upregulation of these genes. We also found that the expression of these genes could be upregulated by increasing doses of an egfl7 morpholino, or even high doses of the standard control morpholino. Thus, these data show that morpholinos can induce the expression of ISGs in zebrafish embryos and further our understanding of morpholino effects.


Efficient delivery of DNA and morpholinos into mouse preimplantation embryos by electroporation.

  • Hui Peng‎ et al.
  • PloS one‎
  • 2012‎

Mouse preimplantation development is characterized by three major transitions and two lineage segregations. Each transition or lineage segregation entails pronounced changes in the pattern of gene expression. Thus, research into the function of genes with obvious changes in expression pattern will shed light on the molecular basis of preimplantation development. We have described a simplified and effective method--electroporation--of introducing plasmid DNA and morpholinos into mouse preimplantation embryos and verified effectiveness of this approach by testing the procedure on the endogenous gene Oct4. Before electroporation, the zona pellucida was weakened by the treatment of acid Tyrode's solution. Then we optimized the parameters such as voltage, pulse duration, number of pulses and repeats, and applied these parameters to subsequent experiments. Compared with the control groups, the number of apoptotic cells and the expression and localization of OCT3/4 or CDX2 was not significantly changed in blastocysts developed from 1-cell embryos, which were electroporated with pIRES2-AcGFP1-Nuc eukaryotic expression vector or mismatched morpholino oligonucleotides. Furthermore, electroporated plasmid DNA and morpholinos targeting the endogenous gene Oct4 were able to sharply down regulate expression of OCT4 protein and actually cause expected phenotypes in mouse preimplantation embryos. In conclusion, plasmid DNA and morpholinos could be efficient delivered into mouse preimplantation embryos by electroporation and exert their functions, and normal development of preimplantation embryos was not affected.


Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus.

  • Julien Falk‎ et al.
  • BMC developmental biology‎
  • 2007‎

Blastomere injection of mRNA or antisense oligonucleotides has proven effective in analyzing early gene function in Xenopus. However, functional analysis of genes involved in neuronal differentiation and axon pathfinding by this method is often hampered by earlier function of these genes during development. Therefore, fine spatio-temporal control of over-expression or knock-down approaches is required to specifically address the role of a given gene in these processes.


Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish.

  • Alexandra Tallafuss‎ et al.
  • Development (Cambridge, England)‎
  • 2012‎

To understand the molecular mechanisms of development it is essential to be able to turn genes on and off at will and in a spatially restricted fashion. Morpholino oligonucleotides (MOs) are very common tools used in several model organisms with which it is possible to block gene expression. Recently developed photo-activated MOs allow control over the onset of MO activity. However, deactivation of photo-cleavable MO activity has remained elusive. Here, we describe photo-cleavable MOs with which it is possible to activate or de-activate MO function by UV exposure in a temporal and spatial manner. We show, using several different genes as examples, that it is possible to turn gene expression on or off both in the entire zebrafish embryo and in single cells. We use these tools to demonstrate the sufficiency of no tail expression as late as tailbud stage to drive medial precursor cells towards the notochord cell fate. As a broader approach for the use of photo-cleavable MOs, we show temporal control over gal4 function, which has many potential applications in multiple transgenic lines. We demonstrate temporal manipulation of Gal4 transgene expression in only primary motoneurons and not secondary motoneurons, heretofore impossible with conventional transgenic approaches. In another example, we follow and analyze neural crest cells that regained sox10 function after deactivation of a photo-cleavable sox10-MO at different time points. Our results suggest that sox10 function might not be critical during neural crest formation.


Exons 45-55 Skipping Using Mutation-Tailored Cocktails of Antisense Morpholinos in the DMD Gene.

  • Yusuke Echigoya‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2019‎

Mutations in the dystrophin (DMD) gene and consequent loss of dystrophin cause Duchenne muscular dystrophy (DMD). A promising therapy for DMD, single-exon skipping using antisense phosphorodiamidate morpholino oligomers (PMOs), currently confronts major issues in that an antisense drug induces the production of functionally undefined dystrophin and may not be similarly efficacious among patients with different mutations. Accordingly, the applicability of this approach is limited to out-of-frame mutations. Here, using an exon-skipping efficiency predictive tool, we designed three different PMO cocktail sets for exons 45-55 skipping aiming to produce a dystrophin variant with preserved functionality as seen in milder or asymptomatic individuals with an in-frame exons 45-55 deletion. Of them, the most effective set was composed of select PMOs that each efficiently skips an assigned exon in cell-based screening. These combinational PMOs fitted to different deletions of immortalized DMD patient muscle cells significantly induced exons 45-55 skipping with removing 3, 8, or 10 exons and dystrophin restoration as represented by western blotting. In vivo skipping of the maximum 11 human DMD exons was confirmed in humanized mice. The finding indicates that our PMO set can be used to create mutation-tailored cocktails for exons 45-55 skipping and treat over 65% of DMD patients carrying out-of-frame or in-frame deletions.


Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo.

  • Alison A Staton‎ et al.
  • Nature protocols‎
  • 2011‎

MicroRNAs (miRNAs) regulate gene expression by pairing with complementary sequences in the 3' untranslated regions (UTRs) of transcripts. Although the molecular mechanism underlying miRNA biogenesis and activity is becoming better understood, determining the physiological role of the interaction of an miRNA with its target remains a challenge. A number of methods have been developed to inhibit individual miRNAs, but it can be difficult to determine which specific targets are responsible for any observed phenotypes. To address this problem, we use target protector (TP) morpholinos that interfere with a single miRNA-mRNA pair by binding specifically to the miRNA target sequence in the 3' UTR. In this protocol, we detail the steps for identifying miRNA targets, validating their regulation and using TPs to interrogate their function in zebrafish. Depending on the biological context, this set of experiments can be completed in 6-8 weeks.


Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development.

  • Wigard P Kloosterman‎ et al.
  • PLoS biology‎
  • 2007‎

Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish.


Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in mdx52 mice.

  • Yusuke Echigoya‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2015‎

Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45-55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges. Previously, we described the feasibility of exons 45-55 skipping with a cocktail of Vivo-Morpholinos in vivo; however, the long-term efficacy and safety of Vivo-Morpholinos remains to be determined. In this study, we examined the efficacy and toxicity of exons 45-55 skipping by intravenous injections of 6 mg/kg 10-Vivo-Morpholino cocktail (0.6 mg/kg each vPMO) every 2 weeks for 18 weeks to dystrophic exon-52 knockout (mdx52) mice. Systemic skipping of the entire exons 45-55 region was induced, and the Western blot analysis exhibited the restoration of 5-27% of normal levels of dystrophin protein in skeletal muscles, accompanied by improvements in histopathology and muscle strength. No obvious immune response and renal and hepatic toxicity were detected at the end-point of the treatment. We demonstrate our new regimen with the 10-Vivo-Morpholino cocktail is effective and safe for long-term repeated systemic administration in the dystrophic mouse model.


Lessons from morpholino-based screening in zebrafish.

  • Victoria M Bedell‎ et al.
  • Briefings in functional genomics‎
  • 2011‎

Morpholino oligonucleotides (MOs) are an effective, gene-specific antisense knockdown technology used in many model systems. Here we describe the application of MOs in zebrafish (Danio rerio) for in vivo functional characterization of gene activity. We summarize our screening experience beginning with gene target selection. We then discuss screening parameter considerations and data and database management. Finally, we emphasize the importance of off-target effect management and thorough downstream phenotypic validation. We discuss current morpholino limitations, including reduced stability when stored in aqueous solution. Advances in MO technology now provide a measure of spatiotemporal control over MO activity, presenting the opportunity for incorporating more finely tuned analyses into MO-based screening. Therefore, with careful management, MOs remain a valuable tool for discovery screening as well as individual gene knockdown analysis.


Antisense knockdown of the beta1 integrin subunit in the chicken embryo results in abnormal neural crest cell development.

  • Richard P Tucker‎
  • The international journal of biochemistry & cell biology‎
  • 2004‎

Neural crest cells escape the neural tube by undergoing an epithelial to mesenchymal transition (EMT). This is followed by extensive migration along specific pathways that are lined with extracellular matrix (ECM). In this study, we have examined the roles of matrix receptors containing beta1 integrin subunits in neural crest cell morphogenesis using antisense morpholino oligos electroporated in ovo into avian neural crest cell precursors. Our results show that reduced levels of expression of beta1 integrin subunits in the dorsal neural tube results in an abnormal epithelial to mesenchymal transition. In approximately half of the experimental embryos, however, some neural crest cells filled with beta1 antisense are able to escape the neural tube and migrate ventrally, indicating that grossly normal migration of trunk neural crest cells can take place after beta1 integrin expression is reduced. This study shows the potential of this novel method for investigating the roles of genes that are required for the survival of early mouse embryos in later development events.


Methylmercury-induced hair cell loss requires hydrogen peroxide production and leukocytes in zebrafish embryos.

  • Zidie Luo‎ et al.
  • Toxicology letters‎
  • 2022‎

Hearing impairment and deafness is frequently observed as one of the neurological signs in patients with Minamata disease caused by methylmercury (MeHg) poisoning. Loss of hair cells in humans and animals is a consequence of MeHg poisoning. However, it is still not clear how MeHg causes hearing deficits. We employed the hair cells of the lateral line system of zebrafish embryos as a model to explore this question. We exposed transgenic zebrafish embryos to MeHg (30-360 μg/L) at the different stages, and scored the numbers of hair cells. We find that MeHg-induced reduction of hair cells is in a concentration dependent manner. By employing antisense morpholino against to pu.1, we confirm that loss of hair cells involves the action of leukocytes. Moreover, hair cell loss is attenuated by co-treating MeHg-exposed embryos with pharmacological inhibitors of NADPH oxidases named diphenyleneiodonium (DPI) and VAS2870. In situ gene expression analysis showed that genes encoding the SQSTM1-Keap1-Nrf2 systems involved in combating oxidative stress and immune responses are highly expressed in the lateral line organs of embryos exposed to MeHg. This suggests that induction of hydrogen peroxide (H2O2) is the primary effect of MeHg on the hair cells. Genes induced by MeHg are also involved in regeneration of the hair cells. These features are likely related to the capacity of the zebrafish to regenerate the lost hair cells.


Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9.

  • Yonghua Sun‎ et al.
  • Genome research‎
  • 2019‎

Genome editing by the well-established CRISPR/Cas9 technology has greatly facilitated our understanding of many biological processes. However, a complete whole-genome knockout for any species or model organism has rarely been achieved. Here, we performed a systematic knockout of all the genes (1333) on Chromosome 1 in zebrafish, successfully mutated 1029 genes, and generated 1039 germline-transmissible alleles corresponding to 636 genes. Meanwhile, by high-throughput bioinformatics analysis, we found that sequence features play pivotal roles in effective gRNA targeting at specific genes of interest, while the success rate of gene targeting positively correlates with GC content of the target sites. Moreover, we found that nearly one-fourth of all mutants are related to human diseases, and several representative CRISPR/Cas9-generated mutants are described here. Furthermore, we tried to identify the underlying mechanisms leading to distinct phenotypes between genetic mutants and antisense morpholino-mediated knockdown embryos. Altogether, this work has generated the first chromosome-wide collection of zebrafish genetic mutants by the CRISPR/Cas9 technology, which will serve as a valuable resource for the community, and our bioinformatics analysis also provides some useful guidance to design gene-specific gRNAs for successful gene editing.


Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish.

  • Lillian Welsh‎ et al.
  • Toxicology and applied pharmacology‎
  • 2009‎

Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.


Cost-effective strategies to knock down genes of interest in the retinas of adult zebrafish.

  • Eyad Shihabeddin‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2023‎

High throughput sequencing has generated an enormous amount of information about the genes expressed in various cell types and tissues throughout the body, and about how gene expression changes over time and in diseased conditions. This knowledge has made targeted gene knockdowns an important tool in screening and identifying the roles of genes that are differentially expressed among specific cells of interest. While many approaches are available and optimized in mammalian models, there are still several limitations in the zebrafish model. In this article, we describe two approaches to target specific genes in the retina for knockdown: cell-penetrating, translation-blocking Vivo-Morpholino oligonucleotides and commercially available lipid nanoparticle reagents to deliver siRNA. We targeted expression of the PCNA gene in the retina of a P23H rhodopsin transgenic zebrafish model, in which rapidly proliferating progenitor cells replace degenerated rod photoreceptors. Retinas collected 48 h after intravitreal injections in adult zebrafish reveal that both Vivo-Morpholinos and lipid encapsulated siRNAs were able to successfully knock down expression of PCNA. However, only retinas injected with Vivo-Morpholinos showed a significant decrease in the formation of P23H rhodopsin-expressing rods, a downstream effect of PCNA inhibition. Surprisingly, Vivo-Morpholinos were able to exit the injected eye and enter the contralateral non-injected eye to inhibit PCNA expression. In this article we describe the techniques, concentrations, and considerations we found necessary to successfully target and inhibit genes through Vivo-Morpholinos and lipid encapsulated siRNAs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: