Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Mineral composition of organically grown wheat genotypes: contribution to daily minerals intake.

  • Abrar Hussain‎ et al.
  • International journal of environmental research and public health‎
  • 2010‎

In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved.


Precipitation of phosphate minerals by microorganisms isolated from a fixed-biofilm reactor used for the treatment of domestic wastewater.

  • Almudena Rivadeneyra‎ et al.
  • International journal of environmental research and public health‎
  • 2014‎

The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%. Twelve major colonies with phosphate precipitation capacity were the dominant heterotrophic platable bacteria growing aerobically in artificial media. According to their taxonomic affiliations (based on partial sequencing of the 16S rRNA), the 12 strains belonged to the following genera of Gram-negative bacteria: Rhodobacter, Pseudoxanthobacter, Escherichia, Alcaligenes, Roseobacter, Ochrobactrum, Agromyce, Sphingomonas and Paracoccus. The phylogenetic tree shows that most of the identified populations were evolutionarily related to the Alphaproteobacteria (91.66% of sequences). The minerals formed were studied by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray microanalysis (EDX). All of these strains formed phosphate crystals and precipitated struvite (MgNH4PO4·6H2O), bobierrite [Mg3(PO4)2·8H2O] and baricite [(MgFe)3(PO4)2·8H2O]. The results obtained in this study show that struvite and spherulite crystals did not show any cell marks. Moreover, phosphate precipitation was observed in the bacterial mass but also near the colonies. Our results suggest that the microbial population contributed to phosphate precipitation by changing the media as a consequence of their metabolic activity. Moreover, the results of this research suggest that bacteria play an active role in the mineral precipitation of soluble phosphate from urban wastewater in submerged fixed-film bioreactors.


Assessing Chromium Contamination in Red Soil: Monitoring the Migration of Fractions and the Change of Related Microorganisms.

  • Siyuan Zhang‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

The improper stacking of chromium (Cr) slag poses a great threat to the environment and human health. The toxicity of Cr in soil is not only related to its total amount, but also to its fractions. A simulated experiment was conducted in laboratory to assess the environmental risk of Cr fractions migration and distribution in red soil. The results showed the content of acid-soluble and reducible Cr significantly decreased (P < 0.05) in top layer but increased in middle and substratum layers over time. This indicated that acid-soluble and reducible Cr migrated downward with time and the relative mobility of acid-soluble Cr (0.038 mg/kg·d·m) was higher than that of reducible Cr (0.028 mg/kg·d·m). Furthermore, correlation analysis between microbial community and chromium fraction showed the relative abundance of Lysobacter, Flavihumibacter, Flavisolbacter, and Altererythrobacter was significantly (P < 0.05) correlated with acid-soluble and reducible fractions. Thus, these microorganisms might be evaluators to assess the migration of acid-soluble and reducible fractions in red soil. In summary, this study provided a new comprehension on remediation of Cr-contaminated soil by monitoring the migration of acid-soluble and reducible fractions and the changes of related microbial groups.


Spatial Distribution of Toxic Metal(loid)s and Microbial Community Analysis in Soil Vertical Profile at an Abandoned Nonferrous Metal Smelting Site.

  • Jiejie Yang‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

In this study soils at different depths were collected in a Zn smelting site located in Zhuzhou City, China, in order to understand toxic metal(loid)s distribution and microbial community in vertical soil profile at a smelting site. Except Soil properties and metal(loid)s content, the richness and diversity of microbial communities in soil samples were analyzed via high-throughput Illumina sequencing of 16s rRNA gene amplicons. The results showed that the content of As, Pb, Cu, Cd, Zn, and Mn was relatively high in top soil in comparison to subsoil, while the concentration of Cr in subsoil was comparable with that in top soil due to its relative high background value in this soil layer. The bioavailability of Cd, Mn, Zn, and Pb was relative higher than that of As, Cr, and Cu. The diversity of soil microbial communities decreased with increasing depth, which might be ascribed to the decrease in evenness with increase in depth duo to the influence by environmental conditions, such as pH, TK (total potassium), CEC (cation exchange capacity), ORP (oxidation reduction potential), and Bio-Cu (bioavailable copper). The results also found Acidobacteria, Proteobacteria, Firmicutes, and Chloroflexi were dominant phyla in soil samples. At the genus level, Acinetobacter, Pseudomonas, and Gp7 were dominant soil microorganism. Besides, Environmental factors, such as SOM (soil organic matter), pH, Bio-Cu, Bio-Cd (bioavailable cadmium), and Bio-Pb (bioavailable lead), greatly impacted microbial community in surface soil (1-3 m), while ORP, TK, and AN concentration influenced microbial community in the subsoil (4-10 m).


Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations.

  • Abdelrahman E E Eltoukhy‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

The outbreak of the 2019 novel coronavirus disease (COVID-19) has adversely affected many countries in the world. The unexpected large number of COVID-19 cases has disrupted the healthcare system in many countries and resulted in a shortage of bed spaces in the hospitals. Consequently, predicting the number of COVID-19 cases is imperative for governments to take appropriate actions. The number of COVID-19 cases can be accurately predicted by considering historical data of reported cases alongside some external factors that affect the spread of the virus. In the literature, most of the existing prediction methods focus only on the historical data and overlook most of the external factors. Hence, the number of COVID-19 cases is inaccurately predicted. Therefore, the main objective of this study is to simultaneously consider historical data and the external factors. This can be accomplished by adopting data analytics, which include developing a nonlinear autoregressive exogenous input (NARX) neural network-based algorithm. The viability and superiority of the developed algorithm are demonstrated by conducting experiments using data collected for top five affected countries in each continent. The results show an improved accuracy when compared with existing methods. Moreover, the experiments are extended to make future prediction for the number of patients afflicted with COVID-19 during the period from August 2020 until September 2020. By using such predictions, both the government and people in the affected countries can take appropriate measures to resume pre-epidemic activities.


Treatment of Gaseous Ammonia Emissions Using Date Palm Pits Based Granular Activated Carbon.

  • Muhammad Vohra‎
  • International journal of environmental research and public health‎
  • 2020‎

The present work investigated the application of granular activated carbon (GAC) derived from date palm pits (DPP) agricultural waste for treating gaseous ammonia. Respective findings indicate increased breakthrough time (run time at which 5% of influent ammonia is exiting with the effluent gas) with a decrease in influent ammonia and increase in GAC bed depth. At a gas flow rate of 1.1 L/min and GAC column length of 8 cm, the following breakthrough trend was noted: 1295 min (2.5 ppmv) > 712 min (5 ppmv) > 532 min (7.5 ppmv). A qualitatively similar trend was also noted for the exhaustion time results (run time at which 95% of influent ammonia is exiting with the effluent gas). The Fourier Transform Infrared Spectroscopy (FTIR) findings for the produced GAC indicated some salient functional groups at the produced GAC surface including O-H, C-H, C-O, and S=O groups. Ammonia adsorption was suggested to result from its interaction with the respective surface functional groups via different mechanisms. Comparison with a commercial GAC showed the date palm pits based GAC to be having slightly higher breakthrough and exhaustion capacity.


Dietary Supplements-For Whom? The Current State of Knowledge about the Health Effects of Selected Supplement Use.

  • Regina Ewa Wierzejska‎
  • International journal of environmental research and public health‎
  • 2021‎

Dietary supplements are products containing nutrients sold in various medicinal forms, and their widespread use may stem from the conviction that a preparation that looks like a drug must have therapeutic properties. The aim of this scoping review is to present what is known about the effects of using selected dietary supplements in the context of chronic diseases, as well as the risks associated with their use. The literature shows that the taking of vitamin and mineral supplements by healthy people neither lowers their risk of cardiovascular diseases nor prevents the development of malignancies. Many scientific societies recognize that omega-3 fatty acids lower blood triglycerides, but whether taking them prevents heart disease is less clear-cut. Taking weight loss supplements is not an effective method of fighting obesity. Often, some supplements are increasingly sold illegally, which is then also associated with the higher risk that they may be adulterated with banned substances, thus making them even more dangerous and potentially life-threatening. Supplements are necessary in cases of nutrient deficiency; however, even though prescription is not required, their use should be recommended and monitored by a physician.


Monitoring of Selected Health Indicators in Children Living in a Copper Mine Development Area in Northwestern Zambia.

  • Astrid M Knoblauch‎ et al.
  • International journal of environmental research and public health‎
  • 2017‎

The epidemiology of malaria, anaemia and malnutrition in children is potentially altered in mining development areas. In a copper extraction project in northwestern Zambia, a health impact assessment (HIA) was commissioned to predict, manage and monitor health impacts. Two cross-sectional surveys were conducted: at baseline prior to project development (2011) and at four years into development (2015). Prevalence of Plasmodium falciparum, anaemia and stunting were assessed in under-five-year-old children, while hookworm infection was assessed in children aged 9-14 years in communities impacted and comparison communities not impacted by the project. P. falciparum prevalence was significantly higher in 2015 compared to 2011 in both impacted and comparison communities (odds ratio (OR) = 2.51 and OR = 6.97, respectively). Stunting was significantly lower in 2015 in impacted communities only (OR = 0.63). Anaemia was slightly lower in 2015 compared to baseline in both impacted and comparison communities. Resettlement due to the project and migration background (i.e., moving into the area within the past five years) were generally associated with better health outcomes in 2015. We conclude that repeated cross-sectional surveys to monitor health in communities impacted by projects should become an integral part of HIA to deepen the understanding of changing patterns of health and support implementation of setting-specific public health measures.


Spatial and temporal variations of satellite-derived multi-year particulate data of Saudi Arabia: an exploratory analysis.

  • Yusuf A Aina‎ et al.
  • International journal of environmental research and public health‎
  • 2014‎

The effects of concentrations of fine particulate matter on urban populations have been gaining attention because fine particulate matter exposes the urban populace to health risks such as respiratory and cardiovascular diseases. Satellite-derived data, using aerosol optical depth (AOD), have been adopted to improve the monitoring of fine particulate matter. One of such data sources is the global multi-year PM2.5 data (2001-2010) released by the Center for International Earth Science Information Network (CIESIN). This paper explores the satellite-derived PM2.5 data of Saudi Arabia to highlight the trend of PM2.5 concentrations. It also examines the changes in PM2.5 concentrations in some urbanized areas of Saudi Arabia. Concentrations in major cities like Riyadh, Dammam, Jeddah, Makkah, Madinah and the industrial cities of Yanbu and Jubail are analyzed using cluster analysis. The health risks due to exposure of the populace are highlighted by using the World Health Organization (WHO) standard and targets. The results show a trend of increasing concentrations of PM2.5 in urban areas. Significant clusters of high values are found in the eastern and south-western part of the country. There is a need to explore this topic using images with higher spatial resolution and validate the data with ground observations to improve the analysis.


Influencing Factors of Understanding COVID-19 Risks and Coping Behaviors among the Elderly Population.

  • Zhonggen Sun‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

It is known that the elderly population has weak immune functioning and is a susceptible and high-risk group with respect to the current coronavirus disease 2019 (COVID-19) epidemic. In this study, to understand the influencing factors of COVID-19-related risks and coping behaviors of elderly individuals with respect to COVID-19 and to provide a basis for taking corresponding protective measures, a questionnaire survey was applied to an elderly population. One-way analysis of variance (ANOVA) and linear regression analysis were used to explore the influencing factors of the level of understanding of COVID-19 risks among the elderly population. Additionally, the chi-square test and logistic regression analysis were used to explore the influencing factors of the elderly population's protective behaviors against COVID-19. This study found: (1) The sex, age, and self-care ability of elderly individuals were significantly correlated with their level of understanding of COVID-19, and that those who were female, were of a younger age, or had better self-care ability had higher levels of understanding; (2) The sex, place of residence, and level of understanding of COVID-19 among the elderly individuals were significantly correlated with their protective behaviors, e.g., those who were women, had high levels of understanding, and lived in cities were more likely to have good behaviors; (3) Elderly individuals' assessments of COVID-19 information provided by the government were significantly correlated with their protective behaviors-those who had a positive evaluation of relevant information provided by the government were more likely to develop protective behavior. The conclusions of this study show that it is crucial to implement COVID-19 prevention and control measures in the elderly population. Society, communities, and families need to increase their concerns about the health and risk awareness of the elderly individuals.


Have Elderly Individuals in Urban China Been Satisfied with Nursing Services during the COVID-19 Pandemic?

  • Shoujin Shan‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Based on the customer satisfaction index model, we constructed an elderly care service satisfaction model that includes 5 latent variables and 16 observed variables. To analyze the degree of satisfaction of elderly individuals in nursing homes, we used structural equation model (SEM) to test the nursing service elderly satisfaction model. With the help of AMOS 22.0 software, we analyzed the degree of model fit and the behavioral relationships between the variables that affect the path. We found that the satisfaction of Chinese urban elderly individuals in nursing homes is at a moderate level, which is lower than the quality expected by elderly individuals. The customer satisfaction index model can be applied to assess satisfaction with nursing services. Furthermore, perceived quality and value have a significant impact on satisfaction.


Evaluation of Fecal Coliform Prevalence and Physicochemical Indicators in the Effluent from a Wastewater Treatment Plant in the North-West Province, South Africa.

  • Stenly Makuwa‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Compliance of the effluents from wastewater treatment plants (WWTPs) to the regulatory standards, which mostly entail the removal/reduction of organic waste and deactivation of the potential microbial pathogens is of great importance. The detection of indicator parameters can be used to determine the effectiveness of a WWTP and the level of compliance with the South African regulatory standards. The performance of the WWTP was assessed by biological, physical and chemical measures in wastewater final effluent. The Escherichia coli ranged from 0 and 2420 count/100 mL in the final effluent. The recorded values for the physicochemical parameters were within the following ranges: pH (7.03-8.49), electrical conductivity (81.63-126.5 mS/m), suspended solids (0.40-20.4 mg/L), ammonia (0-22.15 mg/L), Chemical Oxygen Demand (COD) (1-73 mg/L), nitrate (0-16.1 mg/L), ortho-phosphate (0-8.58 mg/L) and free chlorine (0-3.21 mg/L). Furthermore, the concentration of toxic heavy metals was recorded to be between 1-10 ug/L for arsenic, cadmium, lead and mercury. In conclusion, all the parameters that were evaluated in this study indicate that the studied WWTP is performing in accordance with the prescribed general limits.


Land Subsidence Related to Coal Mining in China Revealed by L-band InSAR Analysis.

  • Liping Zheng‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Geological disasters, including ground deformation, fractures and collapse, are serious problems in coal mining regions, which have threatened the sustainable development for local industry. The Ordos Basin is most known for its abundant coal resources. Over-mining the underground coal resources had induced land deformation. Detecting the evolution of the land deformation features and identifying the potential risk are important for decision-makers to prevent geological disasters. We analyzed land subsidence induced by coal mining in a 200 km2 area in the Ordos Basin for the time period 2006-2015. ALOS-1 PALSAR images from December 2006 to January 2011 and ALOS-2 PALSAR-2 images from December 2014 to July 2015, optical remotely sensed images and coal mining information were collected. The small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) method and differential synthetic aperture radar (D-InSAR) method, GIS and statistical analysis were adopted. Results show that the maximum subsidence rate and cumulative subsidence along the line of sight (LOS) were -56 mm/y and -235 mm, respectively, from December 2006 to January 2011. The maximum cumulative subsidence was -226 mm from December 2014 to July 2015. The new boundary of the mining goafs from 2014 to 2015 and the most dangerous risk region were mapped. Moreover, the effect of large-scale mining coal, with the production volume exceeds 1.2 million tons per year, with the operation time more than 20 years on land subsidence was found greater than small and medium-scale coal mines and reached -59 mm/year. The recently established small-sized and medium-sized coal mines show high land subsidence. This study will contribute to better understand the land subsidence process in mining region and provide scientific support for government to prevent land subsidence.


Competitive Growth of Sulfate-Reducing Bacteria with Bioleaching Acidophiles for Bioremediation of Heap Bioleaching Residue.

  • Aung Kyaw Phyo‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Mining waste rocks containing sulfide minerals naturally provide the habitat for iron- and sulfur-oxidizing microbes, and they accelerate the generation of acid mine drainage (AMD) by promoting the oxidation of sulfide minerals. Sulfate-reducing bacteria (SRB) are sometimes employed to treat the AMD solution by microbial-induced metal sulfide precipitation. It was attempted for the first time to grow SRB directly in the pyritic heap bioleaching residue to compete with the local iron- and sulfur-oxidizing microbes. The acidic SRB and iron-reducing microbes were cultured at pH 2.0 and 3.0. After it was applied to the acidic heap bioleaching residue, it showed that the elevated pH and the organic matter was important for them to compete with the local bioleaching acidophiles. The incubation with the addition of organic matter promoted the growth of SRB and iron-reducing microbes to inhibit the iron- and sulfur-oxidizing microbes, especially organic matter together with some lime. Under the growth of the SRB and iron-reducing microbes, pH increased from acidic to nearly neutral, the Eh also decreased, and the metal, precipitated together with the microbial-generated sulfide, resulted in very low Cu in the residue pore solution. These results prove the inhibition of acid mine drainage directly in situ of the pyritic waste rocks by the promotion of the growth of SRB and iron-reducing microbes to compete with local iron and sulfur-oxidizing microbes, which can be used for the source control of AMD from the sulfidic waste rocks and the final remediation.


Geospatial Distributions of Groundwater Quality in Gedaref State Using Geographic Information System (GIS) and Drinking Water Quality Index (DWQI).

  • Basheer A Elubid‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

The observation of groundwater quality elements is essential for understanding the classification and distribution of drinking water. Geographic Information System (GIS) and remote sensing (RS), are intensive tools for the performance and analysis of spatial datum associated with groundwater sources control. In this study, groundwater quality parameters were observed in three different aquifers including: sandstone, alluvium and basalt. These aquifers are the primary source of national drinking water and partly for agricultural activity in El Faw, El Raha (Fw-Rh), El Qalabat and El Quresha (Qa-Qu) localities in the southern part of Gedaref State in eastern Sudan. The aquifers have been overworked intensively as the main source of indigenous water supply in the study area. The interpolation methods were used to demonstrate the facies pattern and Drinking Water Quality Index (DWQI) of the groundwater in the research area. The GIS interpolation tool was used to obtain the spatial distribution of groundwater quality parameters and DWQI in the area. Forty samples were assembled and investigated for the analysis of major cations and anions. The groundwater in this research is controlled by sodium and bicarbonate ions that defined the composition of the water type to be Na HCO₃. However, from the plots of piper diagram; the samples result revealed (40%) Na-Mg-HCO₃ and (35%) Na-HCO₃ water types. The outcome of the analysis reveals that several groundwater samples have been found to be suitable for drinking purposes in Fa-Rh and Qa-Qu areas.


Distribution, Sources and Water Quality Evaluation of the Riverine Solutes: A Case Study in the Lancangjiang River Basin, Tibetan Plateau.

  • Jinke Liu‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

To examine the chemical composition, potential sources of solutes, and water quality of Lancangjiang River, the concentrations of major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42-, Cl- and NO3-) in 45 river water samples collected in July and August 2019 were determined. Ca2+ and HCO3- are the predominant ions in river water. The extremely low K+ and NO3- concentrations and the sparse population suggest that the anthropogenic inputs are limited. The Pearson correlation coefficients and the elemental ratios Ca2+/Na+ versus Mg2+/Na+, Ca2+/Na versus HCO3-/Na+, [Ca2+ + Mg2+]/[HCO3-] versus [SO42-]/[HCO3-] reveal the mixing processes of different sources; the chemical composition of the river water is controlled by the mixture of carbonate weathering, evaporite weathering and silicate weathering inputs. To quantify the contributions of atmospheric input and rock dissolution, the forward method is employed in this study, which is based on the mass balance equation. The calculation results suggest the carbonate weathering inputs and gypsum dissolution make up the majority of the riverine cations, while silicate weathering and halite dissolution constitutes a relatively small proportion, the contributions of the atmospheric input are limited. The fast dissolution rate of evaporite and carbonate minerals and their lithologic distributions should be the key factor. To evaluate the water quality for drinking and irrigation purposes, the drinking water quality guidelines and the calculated parameters were employed, including sodium adsorption ratio (SAR), soluble sodium percentage (Na%,) and residual sodium carbonate (RSC). The assessments indicate that the river waters in the middle-lower reaches are generally suitable for irrigation and drinking purpose, and will not lead to health and soil problems, such as soil compaction and salinization. While in the upper reaches, the dissolution of carbonate and gypsum minerals transport abundant ions into river water and the river waters are not appropriate to use directly. This result highlights that the water quality status can also be affected by natural weathering processes in the area without anthropogenic inputs, where the long-time monitoring of water quality is also necessary.


The Study of Airborne Particulate Matter in Dalnegorsk Town.

  • Aleksei S Kholodov‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Mines, quarries, dumps, and tailings are the sources of air pollution. In the Dalnegorsk District (Primorsky Krai, Russia), there are 20 polymetallic deposits. This study aimed to evaluate the particle size and material composition of ambient particulate matter (PM) in Dalnegorsk town and verify the influence of mining and chemical industry facilities on the composition of PM. Ambient particulates were analyzed in samples of snow cover and washout from vegetation (conifer tree needles). According to particle size distribution data, the relative content of particles with a diameter up to 10 microns (PM10) reaches 40% in three snow samples taken in the central part of the town. Among ore minerals, pyrite and arsenopyrite predominated in the samples. In addition, sphalerite, galena, cassiterite, and iron-chromium-nickel formations of various shapes were found in the studied particles. The presence of these metals in airborne PM can negatively affect the incidence rate of PM-associated diseases and the determination of their levels are very useful for air pollution prevention strategies.


Groundwater Flow Processes and Human Impact along the Arid US-Mexican Border, Evidenced by Environmental Tracers: The Case of Tecate, Baja California.

  • Jürgen Mahlknecht‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

With the increasing population, urbanization and industry in the arid area of Tecate, there is a concomitant increase in contaminants being introduced into the Tecate River and its aquifer. This contamination is damaging the usable groundwater supply and making local residents and commercial enterprises increasingly dependent on imported water from the Colorado River basin. In this study we apply a suite of chemical and isotopic tracers in order to evaluate groundwater flow and assess contamination trends. Groundwater recharge occurs through mountain-block and mountain-front recharge at higher elevations of the ranges. Groundwater from the unconfined, alluvial aquifer indicates recent recharge and little evolution. The increase in salinity along the flow path is due to interaction with weathering rock-forming silicate minerals and anthropogenic sources such as urban wastewater, residual solids and agricultural runoff from fertilizers, livestock manure and/or septic tanks and latrines. A spatial analysis shows local differences and the impact of the infiltration of imported waters from the Colorado River basin. The general trend of impaired water quality has scarcely been documented in the last decades, but it is expected to continue. Since the groundwater system is highly vulnerable, it is necessary to protect groundwater sources.


Assessment of Dietary Intake and Nutritional Status in CrossFit-Trained Individuals: A Descriptive Study.

  • Anna Gogojewicz‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

CrossFit is a discipline with high training and nutritional requirements. To date, there is only scarce data evaluating nutrition among CrossFit training and they mostly focus on selected nutritional interventions. Therefore, the purpose of this descriptive study was the assessment of dietary intake and nutritional status in a selected group of CrossFit-trained participants. The study consisted of 62 CrossFit athletes (31 men and 31 women, aged 31.0 ± 5.2 and 30.0 ± 4.3 years, respectively). Body composition was analyzed by electrical bioimpedance. Dietary intake was assessed using a standardized 3-day food record. Body fat percentage for females and males was 20.3 ± 4.3% and 13.7 ± 3.3% respectively. The energy intake in the diet was lower (~1700 kcal in women and ~2300 kcal in men) than the recommended demand. Moreover, low consumption of carbohydrates was stated, as well as an inadequate intake of folate, vitamin E (in women), and minerals, such as Fe and Ca (in women). The energy, carbohydrate, iron, and calcium intake in the CrossFit participants' diet was too low in comparison to recommendations. It seems justified to educate athletes and coaches about nutritional habits, and individual energy and nutrients requirements.


Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment.

  • Xueru Guo‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

Globally, groundwater resources are being deteriorated by rapid social development. Thus, there is an urgent need to assess the combined impacts of natural and enhanced anthropogenic sources on groundwater chemistry. The aim of this study was to identify seasonal characteristics and spatial variations in anthropogenic and natural effects, to improve the understanding of major hydrogeochemical processes based on source apportionment. 34 groundwater points located in a riverside groundwater resource area in northeast China were sampled during the wet and dry seasons in 2015. Using principal component analysis and factor analysis, 4 principal components (PCs) were extracted from 16 groundwater parameters. Three of the PCs were water-rock interaction (PC₁), geogenic Fe and Mn (PC₂), and agricultural pollution (PC₃). A remarkable difference (PC₄) was organic pollution originating from negative anthropogenic effects during the wet season, and geogenic F enrichment during the dry season. Groundwater exploitation resulted in dramatic depression cone with higher hydraulic gradient around the water source area. It not only intensified dissolution of calcite, dolomite, gypsum, Fe, Mn and fluorine minerals, but also induced more surface water recharge for the water source area. The spatial distribution of the PCs also suggested the center of the study area was extremely vulnerable to contamination by Fe, Mn, COD, and F-.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: