Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

The atypical antidepressant mianserin exhibits agonist activity at κ-opioid receptors.

  • Maria C Olianas‎ et al.
  • British journal of pharmacology‎
  • 2012‎

Antidepressants are known to interact with the opioid system through mechanisms not completely understood. We previously reported that tricyclic antidepressants act as agonists at distinct opioid receptors. Here, we investigated the effect of the atypical antidepressant mianserin at cloned and native opioid receptors.


LPA1 is a key mediator of intracellular signalling and neuroprotection triggered by tetracyclic antidepressants in hippocampal neurons.

  • Maria C Olianas‎ et al.
  • Journal of neurochemistry‎
  • 2017‎

Both lysophosphatidic acid (LPA) and antidepressants have been shown to affect neuronal survival and differentiation, but whether LPA signalling participates in the action of antidepressants is still unknown. In this study, we examined the role of LPA receptors in the regulation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activity and neuronal survival by the tetracyclic antidepressants, mianserin and mirtazapine in hippocampal neurons. In HT22 immortalized hippocampal cells, antidepressants and LPA induced a time- and concentration-dependent stimulation of ERK1/2 phosphorylation. This response was inhibited by either LPA1 and LPA1/3 selective antagonists or siRNA-induced LPA1 down-regulation, and enhanced by LPA1 over-expression. Conversely, the selective LPA2 antagonist H2L5186303 had no effect. Antidepressants induced cyclic AMP response element binding protein phosphorylation and this response was prevented by LPA1 blockade. ERK1/2 stimulation involved pertussis toxin-sensitive G proteins, Src tyrosine kinases and fibroblast growth factor receptor (FGF-R) activity. Tyrosine phosphorylation of FGF-R was enhanced by antidepressants through LPA1 . Serum withdrawal induced apoptotic death, as indicated by increased annexin V staining, caspase activation and cleavage of poly-ADP-ribose polymerase. Antidepressants inhibited the apoptotic cascade and this protective effect was curtailed by blockade of either LPA1 , ERK1/2 or FGF-R activity. Moreover, in primary mouse hippocampal neurons, mianserin acting through LPA1 increased phospho-ERK1/2 and protected from apoptosis induced by removal of growth supplement. These data indicate that in neurons endogenously expressed LPA1 receptors mediate intracellular signalling and neuroprotection by tetracyclic antidepressants.


Antidepressants induce profibrotic responses via the lysophosphatidic acid receptor LPA1.

  • Maria C Olianas‎ et al.
  • European journal of pharmacology‎
  • 2020‎

Preclinical and clinical studies have indicated that antidepressants can promote inflammation and fibrogenesis, particularly in the lung, by mechanisms not fully elucidated. We have previously shown that different classes of antidepressants can activate the lysophosphatidic acid (LPA) receptor LPA1, a major pathogenetic mediator of tissue fibrosis. The aim of the present study was to investigate whether in cultured human dermal and lung fibroblasts antidepressants could trigger LPA1-mediated profibrotic responses. In both cell types amitriptyline, clomipramine and mianserin mimicked the ability of LPA to induce the phosphorylation/activation of extracellular signal -regulated kinases 1 and 2 (ERK1/2), which was blocked by the selective LPA1 receptor antagonist AM966 and the LPA1/3 antagonist Ki16425. Antidepressant-induced ERK1/2 stimulation was absent in fibroblasts stably depleted of LPA1 by short hairpin RNA transfection and was prevented by pertussis toxin, an uncoupler of receptors from Gi/o proteins. Like LPA, antidepressants stimulated fibroblasts proliferation and this effect was blocked by either AM966 or the MEK1/2 inhibitor PD98059. Moreover, by acting through LPA1 antidepressants induced the expression of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation, and caused an ERK1/2-dependent increase in the cellular levels of transforming growth factor-β (TGF-β)1, a potent fibrogenic cytokine. Pharmacological blockade of TGF-β receptor type 1 prevented antidepressant- and LPA-induced α-SMA expression. These data indicate that in human dermal and lung fibroblasts different antidepressants can induce proliferative and differentiating responses by activating the LPA1 receptor coupled to ERK1/2 signalling and suggest that this property may contribute to the promotion of tissue fibrosis by these drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: