Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

The Mammalian Malonyl-CoA Synthetase ACSF3 Is Required for Mitochondrial Protein Malonylation and Metabolic Efficiency.

  • Caitlyn E Bowman‎ et al.
  • Cell chemical biology‎
  • 2017‎

Malonyl-coenzyme A (malonyl-CoA) is a central metabolite in mammalian fatty acid biochemistry generated and utilized in the cytoplasm; however, little is known about noncanonical organelle-specific malonyl-CoA metabolism. Intramitochondrial malonyl-CoA is generated by a malonyl-CoA synthetase, ACSF3, which produces malonyl-CoA from malonate, an endogenous competitive inhibitor of succinate dehydrogenase. To determine the metabolic requirement for mitochondrial malonyl-CoA, ACSF3 knockout (KO) cells were generated by CRISPR/Cas-mediated genome editing. ACSF3 KO cells exhibited elevated malonate and impaired mitochondrial metabolism. Unbiased and targeted metabolomics analysis of KO and control cells in the presence or absence of exogenous malonate revealed metabolic changes dependent on either malonate or malonyl-CoA. While ACSF3 was required for the metabolism and therefore detoxification of malonate, ACSF3-derived malonyl-CoA was specifically required for lysine malonylation of mitochondrial proteins. Together, these data describe an essential role for ACSF3 in dictating the metabolic fate of mitochondrial malonate and malonyl-CoA in mammalian metabolism.


A Systems Chemoproteomic Analysis of Acyl-CoA/Protein Interaction Networks.

  • Michaella J Levy‎ et al.
  • Cell chemical biology‎
  • 2020‎

Acyl-coenzyme A (CoA)/protein interactions are essential for life. Despite this importance, their global scope and selectivity remains undefined. Here, we describe CATNIP (CoA/AcetylTraNsferase Interaction Profiling), a chemoproteomic platform for the high-throughput analysis of acyl-CoA/protein interactions in endogenous proteomes. First, we apply CATNIP to identify acetyl-CoA-binding proteins through unbiased clustering of competitive dose-response data. Next, we use this method to profile the selectivity of acyl-CoA/protein interactions, leading to the identification of specific acyl-CoA engagement signatures. Finally, we apply systems-level analyses to assess the features of protein networks that may interact with acyl-CoAs, and use a strategy for high-confidence proteomic annotation of acetyl-CoA-binding proteins to identify a site of non-enzymatic acylation in the NAT10 acetyltransferase domain that is likely driven by acyl-CoA binding. Overall, our studies illustrate how chemoproteomics and systems biology can be integrated to understand the roles of acyl-CoA metabolism in biology and disease.


Protein Acylation is a General Regulatory Mechanism in Biosynthetic Pathway of Acyl-CoA-Derived Natural Products.

  • Jun-Yu Xu‎ et al.
  • Cell chemical biology‎
  • 2018‎

Coenzyme A (CoA) esters of short fatty acids (acyl-CoAs) function as key precursors for the biosynthesis of various natural products and the dominant donors for lysine acylation. Herein, we investigated the functional interplay between beneficial and adverse effects of acyl-CoA supplements on the production of acyl-CoA-derived natural products in microorganisms by using erythromycin-biosynthesized Saccharopolyspora erythraea as a model: accumulation of propionyl-CoA benefited erythromycin biosynthesis, but lysine propionylation inhibited the activities of important enzymes involved in biosynthetic pathways of erythromycin. The results showed that the overexpression of NAD+-dependent deacylase could circumvent the inhibitory effects of high acyl-CoA concentrations. In addition, we demonstrated the similar lysine acylation mechanism in other acyl-CoA-derived natural product biosynthesis, such as malonyl-CoA-derived alkaloid and butyryl-CoA-derived bioalcohol. These observations systematically uncovered the important role of protein acylation on interaction between the accumulation of high concentrations of acyl-CoAs and the efficiency of their use in metabolic pathways.


Mechanistic MALDI-TOF Cell-Based Assay for the Discovery of Potent and Specific Fatty Acid Synthase Inhibitors.

  • David Weigt‎ et al.
  • Cell chemical biology‎
  • 2019‎

Human cancers require fatty acid synthase (FASN)-dependent de novo long-chain fatty acid synthesis for proliferation. FASN is therefore an attractive drug target, but fast technologies for reliable label-free cellular compound profiling are lacking. Recently, MALDI-mass spectrometry (MALDI-MS) has emerged as an effective technology for discovery of recombinant protein target inhibitors. Here we present an automated, mechanistic MALDI-MS cell assay, which monitors accumulation of the FASN substrate, malonyl-coenzyme A (CoA), in whole cells with limited sample preparation. Profiling of inhibitors, including unpublished compounds, identified compound 1 as the most potent FASN inhibitor (1 nM in A549 cells) discovered to date. Moreover, cellular MALDI-MS assays enable parallel profiling of additional pathway metabolites. Surprisingly, several compounds triggered cytidine 5'-diphosphocholine (CDP-choline) but not malonyl-CoA accumulation indicating that they inhibit diacylglycerol generation but not FASN activity. Taken together, our study suggests that MALDI-MS cell assays may become important tools in drug profiling that provide additional mechanistic insights concerning compound action on metabolic pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: