Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1.

  • Shuobo Shi‎ et al.
  • mBio‎
  • 2014‎

ABSTRACT Acetyl coenzyme A (acetyl-CoA) carboxylase (ACCase) plays a central role in carbon metabolism and has been the site of action for the development of therapeutics or herbicides, as its product, malonyl-CoA, is a precursor for production of fatty acids and other compounds. Control of Acc1 activity in the yeast Saccharomyces cerevisiae occurs mainly at two levels, i.e., regulation of transcription and repression by Snf1 protein kinase at the protein level. Here, we demonstrate a strategy for improving the activity of ACCase in S. cerevisiae by abolishing posttranslational regulation of Acc1 via site-directed mutagenesis. It was found that introduction of two site mutations in Acc1, Ser659 and Ser1157, resulted in an enhanced activity of Acc1 and increased total fatty acid content. As Snf1 regulation of Acc1 is particularly active under glucose-limited conditions, we evaluated the effect of the two site mutations in chemostat cultures. Finally, we showed that our modifications of Acc1 could enhance the supply of malonyl-CoA and therefore successfully increase the production of two industrially important products derived from malonyl-CoA, fatty acid ethyl esters and 3-hydroxypropionic acid. IMPORTANCE ACCase is responsible for carboxylation of acetyl-CoA to produce malonyl-CoA, which is a crucial step in the control of fatty acid metabolism. ACCase opened the door for pharmaceutical treatments of obesity and diabetes as well as the development of new herbicides. ACCase is also recognized as a promising target for developing cell factories, as its malonyl-CoA product serves as a universal precursor for a variety of high-value compounds in white biotechnology. Yeast ACCase is a good model in understanding the enzyme's catalysis, regulation, and inhibition. The present study describes the importance of protein phosphorylation in regulation of yeast ACCase and identifies potential regulation sites. This study led to the generation of a more efficient ACCase, which was applied in the production of two high-value compounds derived from malonyl-CoA, i.e., fatty acid ethyl esters that can be used as biodiesel and 3-hydroxypropionic acid that is considered an important platform chemical.


Development of a range of fluorescent reagentless biosensors for ATP, based on malonyl-coenzyme A synthetase.

  • Renée Vancraenenbroeck‎ et al.
  • PloS one‎
  • 2017‎

The range of ATP concentrations that can be measured with a fluorescent reagentless biosensor for ATP has been increased by modulating its affinity for this analyte. The ATP biosensor is an adduct of two tetramethylrhodamines with MatB from Rhodopseudomonas palustris. Mutations were introduced into the binding site to modify ATP binding affinity, while aiming to maintain the concomitant fluorescence signal. Using this signal, the effect of mutations in different parts of the binding site was measured. This mutational analysis revealed three variants in particular, each with a single mutation in the phosphate-binding loop, which had potentially beneficial changes in ATP binding properties but preserving a fluorescence change of ~3-fold on ATP binding. Two variants (T167A and T303A) weakened the binding, changing the dissociation constant from the parent's 6 μM to 123 μM and 42 μM, respectively. Kinetic measurements showed that the effect of these mutations on affinity was by an increase in dissociation rate constants. These variants widen the range of ATP concentration that can be measured readily by this biosensor to >100 μM. In contrast, a third variant, S170A, decreased the dissociation constant of ATP to 3.8 μM and has a fluorescence change of 4.2 on binding ATP. This variant has increased selectivity for ATP over ADP of >200-fold. This had advantages over the parent by increasing sensitivity as well as increasing selectivity during ATP measurements in which ADP is present.


Crystal structures of malonyl-coenzyme A decarboxylase provide insights into its catalytic mechanism and disease-causing mutations.

  • D Sean Froese‎ et al.
  • Structure (London, England : 1993)‎
  • 2013‎

Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design.


Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity.

  • Dunja Aksentijević‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2014‎

Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy.


Biosensor-Coupled In Vivo Mutagenesis and Omics Analysis Reveals Reduced Lysine and Arginine Synthesis To Improve Malonyl-Coenzyme A Flux in Saccharomyces cerevisiae.

  • Chenxi Qiu‎ et al.
  • mSystems‎
  • 2022‎

Malonyl-coenzyme A (malonyl-CoA) is an important precursor for producing various chemicals, but its low availability limits the synthesis of downstream products in Saccharomyces cerevisiae. Owing to the complexity of metabolism, evolutionary engineering is required for developing strains with improved malonyl-CoA synthesis. Here, using the biosensor we constructed previously, a growth-based screening system that links the availability of malonyl-CoA with cell growth is developed. Coupling this system with in vivo continuous mutagenesis enabled rapid generation of genome-scale mutation library and screening strains with improved malonyl-CoA availability. The mutant strains are analyzed by whole-genome sequencing and transcriptome analysis. The omics analysis revealed that the carbon flux rearrangement to storage carbohydrate and amino acids synthesis affected malonyl-CoA metabolism. Through reverse engineering, new processes especially reduced lysine and arginine synthesis were found to improve malonyl-CoA synthesis. Our study provides a valuable complementary tool to other high-throughput screening method for mutant strains with improved metabolite synthesis and improves our understanding of the metabolic regulation of malonyl-CoA synthesis. IMPORTANCE Malonyl-CoA is a key precursor for the production a variety of value-added chemicals. Although rational engineering has been performed to improve the synthesis of malonyl-CoA in S. cerevisiae, due to the complexity of the metabolism there is a need for evolving strains and analyzing new mechanism to improve malonyl-CoA flux. Here, we developed a growth-based screening system that linked the availability of malonyl-CoA with cell growth and manipulated DNA replication for rapid in vivo mutagenesis. The combination of growth-based screening with in vivo mutagenesis enabled quick evolution of strains with improved malonyl-CoA availability. The whole-genome sequencing, transcriptome analysis of the mutated strains, together with reverse engineering, demonstrated weakening carbon flux to lysine and arginine synthesis and storage carbohydrate can contribute to malonyl-CoA synthesis. Our work provides a guideline in simultaneous strain screening and continuous evolution for improved metabolic intermediates and identified new targets for improving malonyl-CoA downstream product synthesis.


Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product.

  • Xiaoxu Chen‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p in Saccharomyces cerevisiae. Thirteen phosphorylation sites were mutated, and a combination of three site mutations in Acc1p, S686A, S659A, and S1157A, was found to increase malonyl-CoA availability. ACC1S686AS659AS1157A expression also improved the production of 3-hydroxypropionic acid, a malonyl-CoA-derived chemical, compared to both wild type and the previously reported ACC1S659AS1157A mutation. This mutation will also be beneficial for other malonyl-CoA-derived products.


Malonyl CoA Decarboxylase Inhibition Improves Cardiac Function Post-Myocardial Infarction.

  • Wei Wang‎ et al.
  • JACC. Basic to translational science‎
  • 2019‎

Alterations in cardiac energy metabolism after a myocardial infarction contribute to the severity of heart failure (HF). Although fatty acid oxidation can be impaired in HF, it is unclear if stimulating fatty acid oxidation is a desirable approach to treat HF. Both immediate and chronic malonyl coenzyme A decarboxylase inhibition, which decreases fatty acid oxidation, improved cardiac function through enhancing cardiac efficiency in a post-myocardial infarction rat that underwent permanent left anterior descending coronary artery ligation. The beneficial effects of MCD inhibition were attributed to a decrease in proton production due to an improved coupling between glycolysis and glucose oxidation.


Quantitative Analysis of Acetyl-CoA, Malonyl-CoA, and Succinyl-CoA in Myocytes.

  • Lin Tan‎ et al.
  • Journal of the American Society for Mass Spectrometry‎
  • 2023‎

Several analytical challenges make it difficult to accurately measure coenzyme A (CoA) metaboforms, including insufficient stability and a lack of available metabolite standards. Consequently, our understanding of CoA biology and the modulation of human diseases may be nascent. CoA's serve as lipid precursors, energy intermediates, and mediators of post-translational modifications of proteins. Here, we present a liquid chromatography-mass spectrometry (LC-MS) approach to measure malonyl-CoA, acetyl-CoA, and succinyl-CoA in complex biological samples. Additionally, we evaluated workflows to increase sample stability. We used reference standards to optimize CoA assay sensitivity and test CoA metabolite stability as a function of the reconstitution solvent. We show that using glass instead of plastic sample vials decreases CoA signal loss and improves the sample stability. We identify additives that improve CoA stability and facilitate accurate analysis of CoA species across large sample sets. We apply our optimized workflow to biological samples of skeletal muscle cells cultured under hypoxic and normoxia conditions. Together, our workflow improves the detection and identification of CoA species through targeted analysis in complex biological samples.


Purification and characterization of the Mycobacterium tuberculosis FabD2, a novel malonyl-CoA:AcpM transacylase of fatty acid synthase.

  • Yi-Shu Huang‎ et al.
  • Protein expression and purification‎
  • 2006‎

Malonyl coenzyme A (CoA)-acyl carrier protein (ACP) transacylase (MCAT) is an essential enzyme in fatty acid and mycolic acid biosynthesis of Mycobacterium tuberculosis. fabd2 is a novel gene coding MCAT in M. tuberculosis besides another known fabd. In our study, fabd2 was inserted into a bacterial expression vector pET28a resulting in a 6x Histidine-tag fabd2 fusion gene construction. The protein was purified by nickel affinity chromatography and the characterizations of FabD2 have been investigated. The molecular weight of FabD2 was estimated to be 26 kDa by MALDI-TOF. Consistent with the biosynthesis specialty of reported MCATs, FabD2 resulted in a typical activity of bacterial MCATs, which catalyzes the transacylation of malonate from malonyl-CoA to activated holo-ACP. Some physical and chemical differences between FabD2 and FabD also have been found. FabD2 shows dissimilarity with FabD in secondary structure in different pH buffer and MCAT genes RT-PCR results reveal different transcript condition with each other. Furthermore, FabD2 shows low similarity in protein sequence when alignment with other MCATs.


Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products.

  • Heng Li‎ et al.
  • Microbial cell factories‎
  • 2017‎

Malonyl-coenzyme A (CoA) is an important biosynthetic precursor in vivo. Although Escherichia coli is a useful organism for biosynthetic applications, its malonyl-CoA level is too low.


Malonyl-CoA Accumulation as a Compensatory Cytoprotective Mechanism in Cardiac Cells in Response to 7-Ketocholesterol-Induced Growth Retardation.

  • Mei-Ling Cheng‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The major oxidized product of cholesterol, 7-Ketocholesterol (7KCh), causes cellular oxidative damage. In the present study, we investigated the physiological responses of cardiomyocytes to 7KCh. A 7KCh treatment inhibited the growth of cardiac cells and their mitochondrial oxygen consumption. It was accompanied by a compensatory increase in mitochondrial mass and adaptive metabolic remodeling. The application of [U-13C] glucose labeling revealed an increased production of malonyl-CoA but a decreased formation of hydroxymethylglutaryl-coenzyme A (HMG-CoA) in the 7KCh-treated cells. The flux of the tricarboxylic acid (TCA) cycle decreased, while that of anaplerotic reaction increased, suggesting a net conversion of pyruvate to malonyl-CoA. The accumulation of malonyl-CoA inhibited the carnitine palmitoyltransferase-1 (CPT-1) activity, probably accounting for the 7-KCh-induced suppression of β-oxidation. We further examined the physiological roles of malonyl-CoA accumulation. Treatment with the inhibitor of malonyl-CoA decarboxylase, which increased the intracellular malonyl-CoA level, mitigated the growth inhibitory effect of 7KCh, whereas the treatment with the inhibitor of acetyl-CoA carboxylase, which reduced malonyl-CoA content, aggravated such a growth inhibitory effect. Knockout of malonyl-CoA decarboxylase gene (Mlycd-/-) alleviated the growth inhibitory effect of 7KCh. It was accompanied by improvement of the mitochondrial functions. These findings suggest that the formation of malonyl-CoA may represent a compensatory cytoprotective mechanism to sustain the growth of 7KCh-treated cells.


The Mammalian Malonyl-CoA Synthetase ACSF3 Is Required for Mitochondrial Protein Malonylation and Metabolic Efficiency.

  • Caitlyn E Bowman‎ et al.
  • Cell chemical biology‎
  • 2017‎

Malonyl-coenzyme A (malonyl-CoA) is a central metabolite in mammalian fatty acid biochemistry generated and utilized in the cytoplasm; however, little is known about noncanonical organelle-specific malonyl-CoA metabolism. Intramitochondrial malonyl-CoA is generated by a malonyl-CoA synthetase, ACSF3, which produces malonyl-CoA from malonate, an endogenous competitive inhibitor of succinate dehydrogenase. To determine the metabolic requirement for mitochondrial malonyl-CoA, ACSF3 knockout (KO) cells were generated by CRISPR/Cas-mediated genome editing. ACSF3 KO cells exhibited elevated malonate and impaired mitochondrial metabolism. Unbiased and targeted metabolomics analysis of KO and control cells in the presence or absence of exogenous malonate revealed metabolic changes dependent on either malonate or malonyl-CoA. While ACSF3 was required for the metabolism and therefore detoxification of malonate, ACSF3-derived malonyl-CoA was specifically required for lysine malonylation of mitochondrial proteins. Together, these data describe an essential role for ACSF3 in dictating the metabolic fate of mitochondrial malonate and malonyl-CoA in mammalian metabolism.


Effect of diet composition on coenzyme A and its thioester pools in various rat tissues.

  • Yuka Tokutake‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Three coenzyme A (CoA) molecular species, i.e., acetyl-CoA, malonyl-CoA, and nonesterified CoA (CoASH), in 13 types of fasted rat tissue were analyzed. A relatively larger pool size of total CoA, consisting of acetyl-CoA, malonyl-CoA, and CoASH, was observed in the medulla oblongata, liver, heart, and brown adipose tissue. Focusing on changes in the CoA pool size in response to the nutrient composition of the diet given, total CoA pools in rats continuously fed a high-fat diet for 4 weeks were significantly higher in the hypothalamus, cerebellum, and kidney, and significantly lower in the liver and skeletal muscle than those of rats fed a high-carbohydrate or high-protein diet. In particular, reductions in the liver were remarkable and were caused by decreased CoASH levels. Consequently, the total CoA pool size was reduced by approximately one-fifth of the hepatic contents of rats fed the other diets. In the hypothalamus, which monitors energy balance, all three CoA molecular species measured were at higher levels when rats were fed the high-fat diet. Thus, it was of interest that feeding rats a high-fat diet affected the behaviors of CoA pools in the hypothalamus, liver, and skeletal muscle, suggesting a significant relationship between CoA pools, especially malonyl-CoA and/or CoASH pools, and lipid metabolism in vivo.


Pregnancy induces resistance to the anorectic effect of hypothalamic malonyl-CoA and the thermogenic effect of hypothalamic AMPK inhibition in female rats.

  • Pablo B Martínez de Morentin‎ et al.
  • Endocrinology‎
  • 2015‎

During gestation, hyperphagia is necessary to cope with the metabolic demands of embryonic development. There were three main aims of this study: Firstly, to investigate the effect of pregnancy on hypothalamic fatty acid metabolism, a key pathway for the regulation of energy balance; secondly, to study whether pregnancy induces resistance to the anorectic effect of fatty acid synthase (FAS) inhibition and accumulation of malonyl-coenzyme A (CoA) in the hypothalamus; and, thirdly, to study whether changes in hypothalamic AMPK signaling are associated with brown adipose tissue (BAT) thermogenesis during pregnancy. Our data suggest that in pregnant rats, the hypothalamic fatty acid pathway shows an overall state that should lead to anorexia and elevated BAT thermogenesis: decreased activities of AMP-activated protein kinase (AMPK), FAS, and carnitine palmitoyltransferase 1, coupled with increased acetyl-CoA carboxylase function with subsequent elevation of malonyl-CoA levels. This profile seems dependent of estradiol levels but not prolactin or progesterone. Despite the apparent anorexic and thermogenic signaling in the hypothalamus, pregnant rats remain hyperphagic and display reduced temperature and BAT function. Actually, pregnant rats develop resistance to the anorectic effects of central FAS inhibition, which is associated with a reduction of proopiomelanocortin (POMC) expression and its transcription factors phospho-signal transducer and activator of transcription 3, and phospho-forkhead box O1. This evidence demonstrates that pregnancy induces a state of resistance to the anorectic and thermogenic actions of hypothalamic cellular signals of energy surplus, which, in parallel to the already known refractoriness to leptin effects, likely contributes to gestational hyperphagia and adiposity.


Chemoenzymatic Synthesis and Biological Evaluation for Bioactive Molecules Derived from Bacterial Benzoyl Coenzyme A Ligase and Plant Type III Polyketide Synthase.

  • Kamal Adhikari‎ et al.
  • Biomolecules‎
  • 2020‎

Plant type III polyketide synthases produce diverse bioactive molecules with a great medicinal significance to human diseases. Here, we demonstrated versatility of a stilbene synthase (STS) from Pinus Sylvestris, which can accept various non-physiological substrates to form unnatural polyketide products. Three enzymes (4-coumarate CoA ligase, malonyl-CoA synthetase and engineered benzoate CoA ligase) along with synthetic chemistry was practiced to synthesize starter and extender substrates for STS. Of these, the crystal structures of benzoate CoA ligase (BadA) from Rhodopseudomonas palustris in an apo form or in complex with a 2-chloro-1,3-thiazole-5-carboxyl-AMP or 2-methylthiazole-5-carboxyl-AMP intermediate were determined at resolutions of 1.57 Å, 1.7 Å, and 2.13 Å, respectively, which reinforces its capacity in production of unusual CoA starters. STS exhibits broad substrate promiscuity effectively affording structurally diverse polyketide products. Seven novel products showed desired cytotoxicity against a panel of cancer cell lines (A549, HCT116, Cal27). With the treatment of two selected compounds, the cancer cells underwent cell apoptosis in a dose-dependent manner. The precursor-directed biosynthesis alongside structure-guided enzyme engineering greatly expands the pharmaceutical repertoire of lead compounds with promising/enhanced biological activities.


Legume Cytosolic and Plastid Acetyl-Coenzyme-A Carboxylase Genes Differ by Evolutionary Patterns and Selection Pressure Schemes Acting before and after Whole-Genome Duplications.

  • Anna Szczepaniak‎ et al.
  • Genes‎
  • 2018‎

Acetyl-coenzyme A carboxylase (ACCase, E.C.6.4.1.2) catalyzes acetyl-coenzyme A carboxylation to malonyl coenzyme A. Plants possess two distinct ACCases differing by cellular compartment and function. Plastid ACCase contributes to de novo fatty acid synthesis, whereas cytosolic enzyme to the synthesis of very long chain fatty acids, phytoalexins, flavonoids, and anthocyanins. The narrow leafed lupin (Lupinus angustifolius L.) represents legumes, a plant family which evolved by whole-genome duplications (WGDs). The study aimed on the contribution of these WGDs to the multiplication of ACCase genes and their further evolutionary patterns. The molecular approach involved bacterial artificial chromosome (BAC) library screening, fluorescent in situ hybridization, linkage mapping, and BAC sequencing. In silico analysis encompassed sequence annotation, comparative mapping, selection pressure calculation, phylogenetic inference, and gene expression profiling. Among sequenced legumes, the highest number of ACCase genes was identified in lupin and soybean. The most abundant plastid ACCase subunit genes were accB. ACCase genes in legumes evolved by WGDs, evidenced by shared synteny and Bayesian phylogenetic inference. Transcriptional activity of almost all copies was confirmed. Gene duplicates were conserved by strong purifying selection, however, positive selection occurred in Arachis (accB2) and Lupinus (accC) lineages, putatively predating the WGD event(s). Early duplicated accA and accB genes underwent transcriptional sub-functionalization.


Combinatorial Enzymatic Synthesis of Unnatural Long-Chain β-Branch Pyrones by a Highly Promiscuous Enzyme.

  • Lixia Pan‎ et al.
  • ACS omega‎
  • 2019‎

In this study, we described in detail a combinatorial enzymatic synthesis approach to produce a series of unnatural long-chain β-branch pyrones. We attempted to investigate the catalytic potential of a highly promiscuous enzyme type III PKS to catalyze the non-decarboxylative condensation reaction by two molecules of fatty acyl diketide-N-acetylcysteines (diketide-NACs) units. Two non-natural long-chain (C16, C18) fatty acyl diketide-NACs were prepared successfully for testing the ability of non-decarboxylative condensation. In vitro, 12 novel naturally unavailable long-chain β-branch pyrones were generated by one-pot formation and characterized by ultraviolet-visible spectroscopy and high-resolution liquid chromatography-mass spectrometry. Interestingly, enzymatic kinetics result displays that this enzyme exhibits the remarkable compatibility to various non-natural long-chain substrates. These results would be useful to deeply understand the catalytic mechanism of this enzyme and further extend the application of enzymatic synthesis of non-natural products.


Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program.

  • Adilson Guilherme‎ et al.
  • Cell reports‎
  • 2023‎

Disruption of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) in mice induces browning in inguinal white adipose tissue (iWAT). However, adipocyte FASN knockout (KO) increases acetyl-coenzyme A (CoA) and malonyl-CoA in addition to depletion of palmitate. We explore which of these metabolite changes triggers adipose browning by generating eight adipose-selective KO mouse models with loss of ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), ACC2, malonyl-CoA decarboxylase (MCD) or FASN, or dual KOs ACLY/FASN, ACC1/FASN, and ACC2/FASN. Preventing elevation of acetyl-CoA and malonyl-CoA by depletion of adipocyte ACLY or ACC1 in combination with FASN KO does not block the browning of iWAT. Conversely, elevating malonyl-CoA levels in MCD KO mice does not induce browning. Strikingly, adipose ACC1 KO induces a strong iWAT thermogenic response similar to FASN KO while also blocking malonyl-CoA and palmitate synthesis. Thus, ACC1 and FASN are strong suppressors of adipocyte thermogenesis through promoting lipid synthesis rather than modulating the DNL intermediates acetyl-CoA or malonyl-CoA.


A rapid fluorometric assay for the S-malonyltransacylase FabD and other sulfhydryl utilizing enzymes.

  • Aaron M Marcella‎ et al.
  • Journal of biological methods‎
  • 2016‎

The development of biorenewable chemicals will support green chemistry initiatives and supplement the catalog of starting materials available to the chemical industry. Bacterial fatty acid biosynthesis is being pursued as a source of protein catalysts to synthesize novel reduced carbon molecules in fermentation systems. The availability of methods to measure enzyme catalysis for native and engineered enzymes from this pathway remains a bottleneck because a simple quantitative enzyme assay for numerous enzymes does not exist. Here we present two variations of a fluorescence assay that is readily extendable to high-throughput screening and is appropriate for thiol consuming and generating enzymes including the Escherichia coli enzymes malonyl-coenzyme A transacylase (FabD) and keto-acylsynthase III (FabH). We measured KM values of 60 ± 20 µM (acetyl-CoA) and 20 ± 10 µM (malonyl-ACP) and a kcat of 7.4-9.0 s-1 with FabH. Assays of FabD included a precipitation step to remove the thiol-containing substrate holo-ACP from the reaction product coenzyme-A to estimate reaction rates. Analysis of initial velocity measurements revealed KM values of 60 ± 20 µM (malonyl-CoA) and 40 ± 10 µM (holo-ACP) and a kcat of 2100-2600 s-1for the FabD enzyme. Our data show similar results when compared to existing radioactive and continuous coupled assays in terms of sensitivity while providing the benefit of simplicity, scalability and repeatability. Fluorescence detection also eliminates the need for radioactive substrates traditionally used to assay these enzymes.


ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.

  • Steven Zhao‎ et al.
  • Cell reports‎
  • 2016‎

Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: