Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Integration of cascade delivery and tumor hypoxia modulating capacities in core-releasable satellite nanovehicles to enhance tumor chemotherapy.

  • Jingjing Wang‎ et al.
  • Biomaterials‎
  • 2019‎

Drug nanovehicles owning tumor microenvironment responsive and modulating capacities are highly demanding for effective tumor chemotherapy but still lack of exploration. Here, a kind of core-releasable satellite nanovehicles was rational constructed, which is composed of polydopamine (PDA) cores as photothermal agents and the carrier for small satellite nanoparticles (NPs) and drugs, G5Au NPs as the drug-loading satellites for deep tumor drug delivery and as catalase-like agents for relieving tumor hypoxia, doxorubicin (DOX) as the model chemotherapeutic drug loaded by both PDA and G5Au NPs, and polyethylene glycol (PEG) shells to improve biosafety. The developed drug-loaded nanovehicles (denoted as PDA-G5Au-PEG@DOX) can release G5Au satellites and DOX in stimuli-responsive manners. Thorough drug delivery in solid tumor can be realized via transporting DOX to the near-by area of and remote area from blood vessels by PDA and G5Au, respectively. Monitored by photoacoustic imaging and near-infrared fluorescence imaging, these PDA-G5Au-PEG@DOX NPs could accumulate in 4T1 tumor effectively. Under this guidance, significant tumor growth suppression could be achieved by the treatment of PDA-G5Au-PEG@DOX NPs plus laser without detectable side effects during the treatment period. The developed drug-loaded core-satellite nanovehicles with tumor microenvironment responsive/modulating capacities are of great potential in precise tumor treatments.


DNA-AuNP networks on cell membranes as a protective barrier to inhibit viral attachment, entry and budding.

  • Chun Mei Li‎ et al.
  • Biomaterials‎
  • 2016‎

Viral infections have caused numerous diseases and deaths worldwide. Due to the emergence of new viruses and frequent virus variation, conventional antiviral strategies that directly target viral or cellular proteins are limited because of the specificity, drug resistance and rapid clearance from the human body. Therefore, developing safe and potent antiviral agents with activity against viral infection at multiple points in the viral life cycle remains a major challenge. In this report, we propose a new modality to inhibit viral infection by fabricating DNA conjugated gold nanoparticle (DNA-AuNP) networks on cell membranes as a protective barrier. The DNA-AuNPs networks were found, via a plaque formation assay and viral titers, to have potent antiviral ability and protect host cells from human respiratory syncytial virus (RSV). Confocal immunofluorescence image analysis showed 80 ± 3.8% of viral attachment, 91.1 ± 0.9% of viral entry and 87.9 ± 2.8% of viral budding were inhibited by the DNA-AuNP networks, which were further confirmed by real-time fluorescence imaging of the RSV infection process. The antiviral activity of the networks may be attributed to steric effects, the disruption of membrane glycoproteins and limited fusion of cell membrane bilayers, all of which play important roles in viral infection. Therefore, our results suggest that the DNA-AuNP networks have not only prophylactic effects to inhibit virus attachment and entry, but also therapeutic effects to inhibit viral budding and cell-to-cell spread. More importantly, this proof-of-principle study provides a pathway for the development of a universal, broad-spectrum antiviral therapy.


A dopamine-precursor-based nanoprodrug for in-situ drug release and treatment of acute liver failure by inhibiting NLRP3 inflammasome and facilitating liver regeneration.

  • Chenyue Zhan‎ et al.
  • Biomaterials‎
  • 2021‎

Acute liver failure (ALF) is a severe liver disease with high mortality rate. Inflammasome is a newly-found and promising target for effective treatment of immunity-associated diseases including liver disease, and dopamine has recently been proved as an inhibitor for NLRP3 inflammasome. This work demonstrates a diselenide-based nanodrug for ALF treatment through inhibiting NLRP3 inflammasome activation and enhancing liver regeneration. A diselenide-containing molecule (DSeSeD) has been synthesized via covalently linking two l-Dopa molecules to a diselenide linker, and the resultant molecules form stable nanoparticles in aqueous media and encapsulate SW033291 (an inhibitor of prostaglandin-degrading enzyme that hampers liver regeneration) to produce the nanodrug (SW@DSeSeD). As a nanoscale prodrug, SW@DSeSeD protects its payloads from decomposition in bloodstream upon administration, accumulates in liver of ALF mice, then responds to the overexpressed ROS and thereby releases SW033291 as well as a stable dopamine precursor that can transform into dopamine in hepatic cells, thus achieving significant therapeutic efficacy against ALF through inhibiting NLRP3 inflammasome activation and enhancing hepatic regeneration. Moreover, multiple contrast agents have been loaded onto the nanodrug to achieve fluorescence, optoacoustic and magnetic resonance imaging for nanodrug location and disease evaluation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: