Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 277 papers

Luminescent Bimetallic IrIII /AuI Peptide Bioconjugates as Potential Theranostic Agents.

  • Andrés Luengo‎ et al.
  • Chemistry (Weinheim an der Bergstrasse, Germany)‎
  • 2020‎

Diverse iridium peptide bioconjugates and the corresponding iridium/gold bimetallic complexes have been synthesized starting from a cyclometallated carboxylic acid substituted IrIII complex [Ir(ppy)2 (Phen-5-COO)] by solid phase peptide synthesis (SPPS). The selected peptide sequences were an enkephalin derivative Tyr-Gly-Gly-Phe-Leu together with the propargyl-substituted species Tyr-Gly-Pgl-Phe-Leu to allow gold coordination (Pgl: propyrgyl-glycine, HC≡C-Gly), and a specific short peptide, Ala-Cys-Ala-Phen, containing a cysteine residue. Introduction of the gold center has been achieved via a click reaction with the alkynyl group leading to an organometallic Au-C(triazole) species, or by direct coordination to the sulfur atom of the cysteine. The photophysical properties of these species revealed predominantly an emission originating from the Ir complex, using mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. The formation of the peptide bioconjugates caused a systematic redshift of the emission profiles. Lysosomal accumulation was observed for all the complexes, in contrast to the expected mitochondrial accumulation triggered by the gold complexes. Only the cysteine-containing Ir/Au bioconjugate displayed cytotoxic activity. The absence of activity may be related to the lack of endosomal/lysosomal escape for the cationic peptide conjugates. Interestingly, the different coordination sphere of the gold atom may play a crucial role, as the Au-S(cysteine) bond may be more readily cleaved in a biological environment than the Au-C(triazole) bond, and thus the Au fragment could be released from or trapped in the lysosomes, respectively. This work represents a starting point in the development of bimetallic peptide bioconjugates as theranostics and in the knowledge of factors that contribute to anti-proliferative activity.


Polymeric Nanocarriers with Luminescent Colloidal Nanoplatelets as Hydrophilic and Non-Toxic Two-Photon Bioimaging Agents.

  • Katarzyna Celina Nawrot‎ et al.
  • International journal of nanomedicine‎
  • 2021‎

Semiconductor nanoplatelets (NPLs) are promising materials for nonlinear optical microscopy since they feature good two-photon absorption (TPA) properties, narrow photoluminescence spectra and high quantum yields of luminescence. Nevertheless, the use of semiconductor NPLs is inevitably connected with concerns about heavy metal ion toxicity and their intrinsically hydrophobic character.


Imaging of Biological Cells Using Luminescent Silver Nanoparticles.

  • Vira Kravets‎ et al.
  • Nanoscale research letters‎
  • 2016‎

The application of luminescent silver nanoparticles as imaging agents for neural stem and rat basophilic leukemia cells was demonstrated. The experimental size dependence of the extinction and emission spectra for silver nanoparticles were also studied. The nanoparticles were functionalized with fluorescent glycine dimers. Spectral position of the resonance extinction and photoluminescence emission for particles with average diameters ranging from 9 to 32 nm were examined. As the particle size increased, the spectral peaks for both extinction and the intrinsic emission of silver nanoparticles shifted to the red end of the spectrum. The intrinsic photoluminescence of the particles was orders of magnitude weaker and was spectrally separated from the photoluminescence of the glycine dimer ligands. The spectral position of the ligand emission was independent of the particle size; however, the quantum yield of the nanoparticle-ligand system was size-dependent. This was attributed to the enhancement of the ligand's emission caused by the local electric field strength's dependence on the particle size. The maximum quantum yield determined for the nanoparticle-ligand complex was (5.2 ± 0.1) %. The nanoparticles were able to penetrate cell membranes of rat basophilic leukemia and neural stem cells fixed with paraformaldehyde. Additionally, toxicity studies were performed. It was found that towards rat basophilic leukemia cells, luminescent silver nanoparticles had a toxic effect in the silver atom concentration range of 10-100 μM.


Copper Nanocluster-Doped Luminescent Hydroxyapatite Nanoparticles for Antibacterial and Antibiofilm Applications.

  • Anitha T Simon‎ et al.
  • ACS omega‎
  • 2019‎

Novel strategies in the field of nanotechnology for the development of suitable multifunctional drug delivery vehicles have been pursued with promising upshots. Luminescent copper nanocluster-doped hydroxyapatite nanoparticles (HAP NPs) were synthesized and applied for the delivery of antibacterial drug kanamycin. The negatively charged doped HAP NPs could electrostatically interact with the positively charged kanamycin. The kanamycin-loaded doped HAP NPs showed pronounced activity in the case of Gram-negative bacteria compared to that in Gram-positive bacteria. Upon interaction with the bacteria, kanamycin could probably generate harmful agents such as hydroxyl radical that leads to bacterial cell damage. After being incorporated with copper nanoclusters (Cu NCs), the doped HAP NPs were applied for the bioimaging of bacterial cells. The biocompatibility of doped HAP NPs was also studied in HeLa cells. As compared to copper nanoclusters, the doped HAP NPs showed excellent biocompatibility even at higher concentrations of copper. The kanamycin-loaded doped HAP NPs were further applied toward Pseudomonas aeruginosa biofilm eradication. Thus, the as-synthesized copper nanocluster-doped HAP NPs were applied as nanocarriers for antibiotic drug delivery, bioimaging, and antibiofilm applications.


Single-step acid-catalyzed synthesis of luminescent colloidal organosilica nanobeads.

  • Phornsawat Baipaywad‎ et al.
  • Nano convergence‎
  • 2022‎

We present a single-step, room-temperature synthesis of fluorescent organosilica nanobeads (FOS NBs). The FOS NBs were synthesized under aqueous conditions using (3-aminopropyl)triethoxysilane (APTES) as the silicon source in the presence of L-ascorbic acid (L-AA). In the APTES/L-AA/water ternary phase, the hydrolysis and condensation reaction of APTES occurred under acidic conditions to form spherical FOS NBs with an average diameter of 426.8 nm. FOS NBs exhibit excellent colloidal stability in aqueous media. The formation of FOS NBs was complete within a 10 min reaction time, which indicates potential for large-scale mass-production synthesis of luminescent colloidal NBs. The FOS NBs exhibited blue photoluminescence (PL) under UV excitation in the absence of an additional high temperature calcination process or with the incorporation of any fluorophores. This phenomenon is attributed to the presence of carbon-containing defects, which act as luminescent centers formed by the reaction between amino groups in the APTES and L-ascorbic acid reductant. Finally, the results of a cytotoxicity test and cellular uptake experiments revealed that the FOS NBs showed potential as optical contrast agents for bioimaging.


Single Platform for Gene and Protein Expression Analyses Using Luminescent Gold Nanoclusters.

  • Sunil Kumar Sailapu‎ et al.
  • ACS omega‎
  • 2018‎

A single platform for gene and protein expression studies is proposed to pursue rapid diagnostics. A common method to synthesize gold (Au) nanoclusters on both DNA and protein template was developed using a benchtop device. The method of synthesis is rapid and versatile and can be applied to different classes of DNA/protein. Employing luminescent Au nanoclusters as the signal-generating agents, the device enables carrying out reverse transcriptase polymerase chain reaction and array-based analyses of multiple genes/proteins simultaneously using switchable holders and custom-designed software. The device and methods were applied to evaluate gene profiling related to apoptosis in HeLa cancer cells and further to analyze the protein expressions of glutathione-S-transferase (GST) and GST-tagged human granulocyte macrophage colony-stimulating factor (GST-hGMCSF) recombinant proteins purified from bacterial strains of BL21(DE3) Escherichia coli (E. coli). The device with user-friendly methods for diagnosis using the luminescence of Au nanoclusters offers potential use in disease diagnostics with a vision to extend health care facilities especially to remote geographical locations.


A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging.

  • Yuyan Jiang‎ et al.
  • Nature communications‎
  • 2019‎

Afterglow imaging with long-lasting luminescence after cessation of light excitation provides opportunities for ultrasensitive molecular imaging; however, the lack of biologically compatible afterglow agents has impeded exploitation in clinical settings. This study presents a generic approach to transforming ordinary optical agents (including fluorescent polymers, dyes, and inorganic semiconductors) into afterglow luminescent nanoparticles (ALNPs). This approach integrates a cascade photoreaction into a single-particle entity, enabling ALNPs to chemically store photoenergy and spontaneously decay it in an energy-relay process. Not only can the afterglow profiles of ALNPs be finetuned to afford emission from visible to near-infrared (NIR) region, but also their intensities can be predicted by a mathematical model. The representative NIR ALNPs permit rapid detection of tumors in living mice with a signal-to-background ratio that is more than three orders of magnitude higher than that of NIR fluorescence. The biodegradability of the ALNPs further heightens their potential for ultrasensitive in vivo imaging.


Mitochondrial imaging in live or fixed tissues using a luminescent iridium complex.

  • Alexandra Sorvina‎ et al.
  • Scientific reports‎
  • 2018‎

Mitochondrial morphology is important for the function of this critical organelle and, accordingly, altered mitochondrial structure is exhibited in many pathologies. Imaging of mitochondria can therefore provide important information about disease presence and progression. However, mitochondrial imaging is currently limited by the availability of agents that have the capacity to image mitochondrial morphology in both live and fixed samples. This can be particularly problematic in clinical studies or large, multi-centre cohort studies, where tissue archiving by fixation is often more practical. We previously reported the synthesis of an iridium coordination complex [Ir(ppy)2(MeTzPyPhCN)]+; where ppy is a cyclometalated 2-phenylpyridine and TzPyPhCN is the 5-(5-(4-cyanophen-1-yl)pyrid-2-yl)tetrazolate ligand; and showed that this complex (herein referred to as IraZolve-Mito) has a high specificity for mitochondria in live cells. Here we demonstrate that IraZolve-Mito can also effectively stain mitochondria in both live and fixed tissue samples. The staining protocol proposed is versatile, providing a universal procedure for cell biologists and pathologists to visualise mitochondria.


Cytotoxic and Luminescent Properties of Novel Organotin Complexes with Chelating Antioxidant Ligand.

  • Evgeny Nikitin‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

A novel polydentate chelating antioxidant ligand and series of organotin complexes on its base were synthesized and characterized by NMR 1H, 13C, 119Sn, IR spectroscopy, X-ray, and elemental analysis. Their antioxidant activity was evaluated in DPPH and NBT-tests, and as lipoxygenase inhibitory activity. It was shown that ligand alone is a radical scavenger, while introducing tin in the structure of the compound significantly decreases its activity. For the ligand alone the ability to strongly suppress the formation of advanced glycation end products (AGEs) was shown, which may be associated with the established antiradical activity. All synthesized compounds appeared to be moderate lipoxygenase inhibitors. The stability of compounds to hydrolysis under different pH was estimated. The ligand undergoes decomposition after about an hour, while organotin complexes on its base demonstrate vast stability, showing signs of decomposition only after 5 h of experimentation. Cytotoxicity of compounds was studied by standard MTT-test, which showed unorthodox results: the ligand itself demonstrated noticeable cytotoxicity while the introduction of organotin moiety either did not affect the toxicity levels or reduced them instead of increasing. Organotin complexes possess luminescence both as powders and DMSO solutions, its quantum yields reaching 67% in DMSO. The combination of luminescence with unique cytotoxic properties allows us to propose the synthesized compounds as perspective theranostic agents.


Near-infrared luminescent metallacrowns for combined in vitro cell fixation and counter staining.

  • Ivana Martinić‎ et al.
  • Chemical science‎
  • 2017‎

Cell fixation is an essential approach for preserving cell morphology, allowing the targeting and labelling of biomolecules with fluorescent probes. One of the key requirements for more efficient fluorescent labelling is the preservation of cell morphology, which usually requires a combination of several fixation techniques. In addition, the use of a counter stain is often essential to improve the contrast of the fluorescent probes. Current agents possess significant limitations, such as low resistance toward photobleaching and sensitivity to changes in the microenvironment. Luminescent Ln3+ 'encapsulated sandwich' metallacrowns (MCs) overcome these drawbacks and offer complementary advantages. In particular, they emit sharp emission bands, possess a large difference between excitation and emission wavelengths and do not photobleach. Herein, MCs formed with pyrazinehydroxamic acid (Ln3+[Zn(ii)MCpyzHA], Ln3+ = Yb, Nd) were used, combined with near-infrared (NIR) counter staining and fixation agents for HeLa cells upon an initial five minute exposure to UV-A light. The validity and quality of the cell fixation were assessed with Raman spectroscopy. Analysis of the NIR luminescence properties of these MCs was performed under different experimental conditions, including in a suspension of stained cells. Moreover, the high emission intensity of Ln3+[Zn(ii)MCpyzHA] in the NIR region allows these MCs to be used for imaging with standard CCD cameras installed on routine fluorescence microscopes. Finally, the NIR-emitting Ln3+[Zn(ii)MCpyzHA] compounds combine, within a single molecule, features such as cell fixation and staining abilities, good photostability and minimal sensitivity of the emission bands to the local microenvironment, and they are highly promising for establishing the next generation of imaging agents with a single biodistribution.


Cathodoluminescence imaging of cellular structures labeled with luminescent iridium or rhenium complexes at cryogenic temperatures.

  • Marie Vancová‎ et al.
  • Scientific reports‎
  • 2022‎

We report for the first time the use of two live-cell imaging agents from the group of luminescent transition metal complexes (IRAZOLVE-MITO and REZOLVE-ER) as cathodoluminescent probes. This first experimental demonstration shows the application of both probes for the identification of cellular structures at the nanoscale and near the native state directly in the cryo-scanning electron microscope. This approach can potentially be applied to correlative and multimodal approaches and used to target specific regions within vitrified samples at low electron beam energies.


Near Infrared-Emitting Cr3+/Eu3+ Co-doped Zinc Gallogermanate Persistence Luminescent Nanoparticles for Cell Imaging.

  • Qiaoqiao Wang‎ et al.
  • Nanoscale research letters‎
  • 2018‎

Near infrared (NIR)-emitting persistent luminescent nanoparticles have been developed as potential agents for bioimaging. However, synthesizing uniform nanoparticles with long afterglow for long-term imaging is lacking. Here, we demonstrated the synthesis of spinel structured Zn3Ga2Ge2O10:Cr3+ (ZGGO:Cr3+) and Zn3Ga2Ge2O10:Cr3+,Eu3+ (ZGGO:Cr3+,Eu3+) nanoparticles by a sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The samples were investigated via detailed characterizations by combined techniques of XRD, TEM, STEM, selected area electron diffraction, photoluminescence excitation (PLE)/photoluminescence (PL) spectroscopy, and temperature-dependent PL analysis. The single-crystalline nanoparticles are homogeneous solid solution, possessing uniform cubic shape and lateral size of ~ 80-100 nm. Upon UV excitation at 273 nm, ZGGO:Cr3+,Eu3+ exhibited a NIR emission band at 697 nm (2E → 4A2 transition of distorted Cr3+ ions in gallogermanate), in the absence of Eu3+ emission. NIR persistent luminescence of the sample can last longer than 7200 s and still hold intense intensity. Eu3+ incorporation increased the persistent luminescence intensity and the afterglow time of ZGGO:Cr3+, but it did not significantly affect the thermal stability. The obtained ZGGO:Cr3+,Eu3+-NH2 nanoparticles possessed an excellent imaging capacity for cells in vitro.


Facile One-Pot Green Synthesis of Magneto-Luminescent Bimetallic Nanocomposites with Potential as Dual Imaging Agent.

  • Radek Ostruszka‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

Nanocomposites serving as dual (bimodal) probes have great potential in the field of bio-imaging. Here, we developed a simple one-pot synthesis for the reproducible generation of new luminescent and magnetically active bimetallic nanocomposites. The developed one-pot synthesis was performed in a sequential manner and obeys the principles of green chemistry. Briefly, bovine serum albumin (BSA) was exploited to uptake Au (III) and Fe (II)/Fe (III) ions simultaneously. Then, Au (III) ions were transformed to luminescent Au nanoclusters embedded in BSA (AuNCs-BSA) and majority of Fe ions were bio-embedded into superparamagnetic iron oxide nanoparticles (SPIONs) by the alkalization of the reaction medium. The resulting nanocomposites, AuNCs-BSA-SPIONs, represent a bimodal nanoprobe. Scanning transmission electron microscopy (STEM) imaging visualized nanostructures with sizes in units of nanometres that were arranged into aggregates. Mössbauer spectroscopy gave direct evidence regarding SPION presence. The potential applicability of these bimodal nanoprobes was verified by the measurement of their luminescent features as well as magnetic resonance (MR) imaging and relaxometry. It appears that these magneto-luminescent nanocomposites were able to compete with commercial MRI contrast agents as MR displays the beneficial property of bright luminescence of around 656 nm (fluorescence quantum yield of 6.2 ± 0.2%). The biocompatibility of the AuNCs-BSA-SPIONs nanocomposite has been tested and its long-term stability validated.


Genome Characterization and Infectivity Potential of Vibriophage-ϕLV6 with Lytic Activity against Luminescent Vibrios of Penaeus vannamei Shrimp Aquaculture.

  • Manikantha Benala‎ et al.
  • Viruses‎
  • 2023‎

Shrimp aquaculture, especially during the hatchery phase, is prone to economic losses due to infections caused by luminescent vibrios. In the wake of antimicrobial resistance (AMR) in bacteria and the food safety requirements of farmed shrimp, aqua culturists are seeking alternatives to antibiotics for shrimp health management, and bacteriophages are fast emerging as natural and bacteria-specific antimicrobial agents. This study analyzed the whole genome of vibriophage-ϕLV6 that showed lytic activity against six luminescent vibrios isolated from the larval tanks of P. vannamei shrimp hatcheries. The Vibriophage-ϕLV6 genome was 79,862 bp long with 48% G+C content and 107 ORFs that coded for 31 predicted protein functions, 75 hypothetical proteins, and a tRNA. Pertinently, the vibriophage-ϕLV6 genome harbored neither AMR determinants nor virulence genes, indicating its suitability for phage therapy. There is a paucity of whole genome-based information on vibriophages that lyse luminescent vibrios, and this study adds pertinent data to the database of V. harveyi infecting phage genomes and, to our knowledge, is the first vibriophage genome report from India. Transmission electron microscopy (TEM) of vibriophage-ϕLV6 revealed an icosahedral head (~73 nm) and a long, flexible tail (~191 nm) suggesting siphovirus morphology. The vibriophage-ϕLV6 phage at a multiplicity of infection (MOI) of 80 inhibited the growth of luminescent V. harveyi at 0.25%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3% salt gradients. In vivo experiments conducted with post-larvae of shrimp showed that vibriophage-ϕLV6 reduced luminescent vibrio counts and post-larval mortalities in the phage-treated tank compared to the bacteria-challenged tank, suggesting the potentiality of vibriophage-ϕLV6 as a promising candidate in treating luminescent vibriosis in shrimp aquaculture. The vibriophage-ϕLV6 survived for 30 days in salt (NaCl) concentrations ranging from 5 ppt to 50 ppt and was stable at 4 °C for 12 months.


Magnetic and Highly Luminescent Heterostructures of Gd3+/ZnO Conjugated to GCIS/ZnS Quantum Dots for Multimodal Imaging.

  • Bruna Lallo da Silva‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2021‎

In recent years, the use of quantum dots (Qdots) to obtain biological images has attracted attention due to their excellent luminescent properties and the possibility of their association with contrast agents for magnetic resonance imaging (MRI). In this study, Gd3+/ZnO (ZnOGd) were conjugated with Qdots composed of a gadolinium-copper-indium-sulphur core covered with a ZnS shell (GCIS/ZnS Qdots). This conjugation is an innovation that has not yet been described in the literature, and which aims to improve Qdot photoluminescent properties. Structural and morphological Qdots features were obtained by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analyses (TGA). The photoluminescent properties were examined by emission (PL) and excitation (PLE) spectra. A new ZnOGd and GCIS/ZnS (ZnOGd-GCIS/ZnS) nanomaterial was synthesized with tunable optical properties depending on the ratio between the two native Qdots. A hydrophilic or lipophilic coating, using 3-glycidyloxypropyltrimethoxysilane (GPTMS) or hexadecyltrimethoxysilane (HTMS) on the surface of ZnOGd-GCIS/ZnS Qdots, was carried out before assessing their efficiency as magnetic resonance contrast agents. ZnOGd-GCIS/ZnS had excellent luminescence and MRI properties. The new Qdots developed ZnOGd-GCIS/ZnS, mostly constituted of ZnOGd (75%), which had less cytotoxicity when compared to ZnOGd, as well as greater cellular uptake.


Real-Time Tracking of Highly Luminescent Mesoporous Silica Particles Modified with Europium β-Diketone Chelates in Living Cells.

  • Jong-Seok Kim‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2021‎

Highly luminescent europium complexes modified mesoporous silica particles (MSP) were synthesized as an imaging probes for both in-vitro diagnostic and in-vivo cellular tracking agents. Europium β-diketone chelates (4,4,4-trifluoro-l-(2-thienyl)-l,3-butanedione) trioctylphosphine europium (III) (Eu(TTA)3(P(Oct)3)3) were incorporated inside the nanocavities that existed in hierarchical MSP (Eu@MSP). The MSP and Eu@MSP on mouse bone marrow-derived macrophages (BMDMs) did not show any toxic effect. The MSP and Eu@MSP in the BMDMs were found at cytoplasm without any degradation and immunogenicity. However, both pro- and anti-inflammatory cytokines of macrophages were significantly increased when lipopolysaccharide and a high concentration (100 μg/mL) of MSP and Eu@MSP were treated simultaneously.


Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8.

  • George Seghal Kiran‎ et al.
  • NPJ biofilms and microbiomes‎
  • 2016‎

Luminescent vibrios are ubiquitous in the marine environment and are the causative agents of vibriosis and mass mortality in many aquatic animals. In aquatic environments, treatments cannot be limited to the diseased population alone, therefore treatment of the entire aquatic system is the only possible approach. Thus, the use of antibiotics to treat part of the infected animals requires a dose based on the entire biomass, which results in the treatment of uninfected animals as well as non-target normal microbial flora. A treatment method based on anti-virulence or quorum quenching has recently been proposed as an effective treatment strategy for aquatic animals. Polyhydroxy butyrates (PHB) are bacterial storage molecules, which accumulate in cells under nutritional stress. The degradation of PHB releases short-chain β-hydroxy butyric acid, which may act as anti-infective molecule. To date, there is very limited information on the potential anti-infective and anti-virulence mechanisms involving PHB. In this study, we aim to examine the effect of PHB on inhibition of the virulence cascade of Vibrio such as biofilm formation, luminescence, motility behaviour, haemolysin and quorum sensing. A luminescent Vibrio PUGSK8, tentatively identified as Vibrio campbellii PUGSK8 was tested in vitro for production of extracellular virulence factors and then established as a potential shrimp pathogen based on in vivo challenge experiments. The ability of Vibrio PUGSK8 to form biofilms and the effect of PHB on biofilm formation was tested in a 96-well microtitre-plate assay system. The motility behaviour of Vibrio PUGSK8 was evaluated using twitching, swimming and swarming plate assays. Reporter strains such as Chromobacterium violaceum CV026 and Agrobacterium tumefaciens were used to detect quorum-sensing molecules. Gas chromatography-mass spectrometry spectral analysis was performed to elucidate the fragmentation pattern and structure of N-hexanoyl homoserine lactone. PHB depolymerase activity in Vibrio PUGSK8 was quantified as the amount of the enzyme solution to hydrolyse 1 μg of PHB per min. An in vivo challenge experiment was performed using a gnotobiotic Artemia assay. Of the 27 isolates tested, the Vibrio PUGSK8 strain was selected for target-specific assays based on the high intensity of luminescence and production of virulence factors. The virulence cascade detected in Vibrio PUGSK8 include luminescence, motility behaviour, biofilm formation, quorum sensing and haemolysin production. Thus inhibition/degradation of the virulence cascade would be an effective approach to contain Vibrio infections in aquatic animals. In this report, we demonstrate that the degradation intermediate of PHB effectively inhibits biofilm formation, luminescence, motility behaviour, haemolysin production and the N-acyl-homoserine lactone (AHL)-mediated quorum-sensing pathway in PUGSK8. Interestingly, the growth of Vibrio PUGSK8 remains unaffected in the presence of PHB, with PHB degradation being detected in the media. PHB depolymerase activity in Vibrio PUGSK8 results in the release of degradation intermediates include a short-chain β-hydroxy butyric acid, which inhibits the virulence cascade in Vibrio PUGSK8. Thus, a molecule that targets quorum sensing and the virulence cascade and which is species/strain-specific could prove to be an effective alternative to antimicrobial agents to control the pathogenesis of Vibrio, and thereby help to contain Vibrio outbreaks in aquatic systems.


Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia.

  • Mark A Miller‎ et al.
  • PloS one‎
  • 2012‎

Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.


Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis.

  • Elena Efremenko‎ et al.
  • Toxins‎
  • 2021‎

Novel sensitive analytical agents that can be used for simple, affordable, and rapid analysis of mycotoxins are urgently needed in scientific practice, especially for the screening of perspective bio-destructors of the toxic contaminants. We compared the characteristics of a rapid quantitative analysis of different mycotoxins (deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, and zearalenone) using acetyl-, butyrylcholinesterases and photobacterial strains of luminescent cells in the current study. The best bioindicators in terms of sensitivity and working range (μg/mL) were determined as follows: Photobacterium sp. 17 cells for analysis of deoxynivalenol (0.8-89) and patulin (0.2-32); Photobacterium sp. 9.2 cells for analysis of ochratoxin A (0.4-72) and zearalenone (0.2-32); acetylcholinesterase for analysis of sterigmatocystin (0.12-219). The cells were found to be more sensitive than enzymes. The assayed strains of photobacterial cells ensured 44%-83% lower limit of detection for deoxynivalenol and sterigmatocystin as compared to the previously known data for immobilized luminescent cells, and the range of working concentrations was extended by a factor of 1.5-3.5. Calibration curves for the quantitative determination of patulin using immobilized photobacteria were presented in this work for the first time. This calibration was applied to estimate the enzyme efficiency for hydrolyzing mycotoxins using zearalenone and His6-tagged organophosphorus hydrolase as examples.


Luminescent/magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics.

  • Xue Shen‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

Cancer diagnosis and treatment represent an urgent medical need given the rising cancer incidence over the past few decades. Cancer theranostics, namely, the combination of diagnostics and therapeutics within a single agent, are being developed using various anticancer drug-, siRNA-, or inorganic materials-loaded nanocarriers. Herein, we demonstrate a strategy of encapsulating quantum dots, superparamagnetic Fe3O4 nanocrystals, and doxorubicin (DOX) into biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) polymeric nanocomposites using the double emulsion solvent evaporation method, followed by coupling to the amine group of polyethyleneimine premodified with polyethylene glycol-folic acid (PEI-PEG-FA [PPF]) segments and adsorption of vascular endothelial growth factor (VEGF)-targeted small hairpin RNA (shRNA). VEGF is important for tumor growth, progression, and metastasis. These drug-loaded luminescent/magnetic PLGA-based hybrid nanocomposites (LDM-PLGA/PPF/VEGF shRNA) were fabricated for tumor-specific targeting, drug/gene delivery, and cancer imaging. The data showed that LDM-PLGA/PPF/VEGF shRNA nanocomposites can codeliver DOX and VEGF shRNA into tumor cells and effectively suppress VEGF expression, exhibiting remarkable synergistic antitumor effects both in vitro and in vivo. The cell viability waŝ14% when treated with LDM-PLGA/PPF/VEGF shRNA nanocomposites ([DOX] =25 μg/mL), and in vivo tumor growth data showed that the tumor volume decreased by 81% compared with the saline group at 21 days postinjection. Magnetic resonance and fluorescence imaging data revealed that the luminescent/magnetic hybrid nanocomposites may also be used as an efficient nanoprobe for enhanced T2-weighted magnetic resonance and fluorescence imaging in vitro and in vivo. The present work validates the great potential of the developed multifunctional LDM-PLGA/PPF/VEGF shRNA nanocomposites as effective theranostic agents through the codelivery of drugs/genes and dual-modality imaging in cancer treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: