2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 115 papers

Formulation and evaluation of celastrol-loaded liposomes.

  • Jie Song‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2011‎

The main purpose of this study was to evaluate the intestinal absorption and the antineoplastic effect of the poorly water-soluble drug celastrol when liposomes were used as oral drug delivery system. Liposomes were prepared by the ethanol-injection method. An optimized liposome formulation composed of phospholipid, cholesterol and Tween-80 resulted in favorable encapsulation efficiency at 98.06 ± 0.94%. Homogeneous and stable particle size of 89.6 ± 7.3 nm and zeta potential of -(87.7 ± 5.8) mV were determined by laser particle size analyzer. Subsequently, the four-site perfusion rat intestinal model revealed that celastrol-loaded liposomes had improved effective permeability compared to the free drug in four intestinal segments (p < 0.05). Moreover, celastrol-loaded liposomes could also inhibit the tumor growth in C57BL/6 mice. These results suggest that liposomes could be a promising perioral carrier for celastrol.


Antiviral Potential of Naphthoquinones Derivatives Encapsulated within Liposomes.

  • Viveca Giongo‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

HSV infections, both type 1 and type 2, are among the most widespread viral diseases affecting people of all ages. Their symptoms could be mild, with cold sores up to 10 days of infection, blindness and encephalitis caused by HSV-1 affecting immunocompetent and immunosuppressed individuals. The severe effects derive from co-evolution with the host, resulting in immune evasion mechanisms, including latency and growing resistance to acyclovir and derivatives. An efficient alternative to controlling the spreading of HSV mutations is the exploitation of new drugs, and the possibility of enhancing their delivery through the encapsulation of drugs into nanoparticles, such as liposomes. In this work, liposomes were loaded with a series of 2-aminomethyl- 3-hydroxy-1,4-naphthoquinones derivatives with n-butyl (compound 1), benzyl (compound 2) and nitrobenzene (compound 3) substituents in the primary amine of naphthoquinone. They were previously identified to have significant inhibitory activity against HSV-1. All of the aminomethylnaphthoquinones derivatives encapsulated in the phosphatidylcholine liposomes were able to control the early and late phases of HSV-1 replication, especially those substituted with the benzyl (compound 2) and nitrobenzene (compound 3), which yields selective index values that are almost nine times more efficient than acyclovir. The growing interest of the industry in topical administration against HSV supports our choice of liposome as a drug carrier of aminomethylnaphthoquinones derivatives for formulations of in vivo pre-clinical assays.


Nanoformulation and Evaluation of Oral Berberine-Loaded Liposomes.

  • Thuan Thi Duong‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Berberine (BBR) is a poorly water-soluble quaternary isoquinoline alkaloid of plant origin with potential uses in the drug therapy of hypercholesterolemia. To tackle the limitations associated with the oral therapeutic use of BBR (such as a first-pass metabolism and poor absorption), BBR-loaded liposomes were fabricated by ethanol-injection and thin-film hydration methods. The size and size distribution, polydispersity index (PDI), solid-state properties, entrapment efficiency (EE) and in vitro drug release of liposomes were investigated. The BBR-loaded liposomes prepared by ethanol-injection and thin-film hydration methods presented an average liposome size ranging from 50 nm to 244 nm and from 111 nm to 449 nm, respectively. The PDI values for the liposomes were less than 0.3, suggesting a narrow size distribution. The EE of liposomes ranged from 56% to 92%. Poorly water-soluble BBR was found to accumulate in the bi-layered phospholipid membrane of the liposomes prepared by the thin-film hydration method. The BBR-loaded liposomes generated by both nanofabrication methods presented extended drug release behavior in vitro. In conclusion, both ethanol-injection and thin-film hydration nanofabrication methods are feasible for generating BBR-loaded oral liposomes with a uniform size, high EE and modified drug release behavior in vitro.


Novel PEGylated Liposomes Enhance Immunostimulating Activity of isRNA.

  • Tatyana Kabilova‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

The performance of cationic liposomes for delivery of therapeutic nucleic acids in vivo can be improved and specifically tailored to certain types of cargo and target cells by incorporation of PEG-containing lipoconjugates in the cationic liposome's composition. Here, we report on the synthesis of novel PEG-containing lipoconjugates with molecular masses of PEG 800, 1500 and 2000 Da. PEG-containing lipoconjugates were used as one of the components in liposome preparation with the polycationic amphiphile 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetra-azahexacosan tetrahydrochloride (2X3) and the lipid-helper dioleoylphosphatidylethanolamine (DOPE). We demonstrate that increasing the length of the PEG chain reduces the transfection activity of liposomes in vitro, but improves the biodistribution, increases the circulation time in the bloodstream and enhances the interferon-inducing activity of immunostimulating RNA in vivo.


Design of Liposomes Carrying HelixComplex Snail Mucus: Preliminary Studies.

  • Andrea Alogna‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

In recent decades liposomes have been used in different field thanks to their ability to act as a vehicle for a wide range of biomolecules, their great versatility and their easy production. The aim of this study was to evaluate liposomes as a vehicle for the actives present in the HelixComplex (HC) snail mucus for topical delivery. Liposomes composed of a mixture of phosphatidylcholine, cholesterol and octadecylamine were prepared with and without HC (empty liposomes) and their biological efficacy was tested by evaluating cell viability and migration. HC-loaded liposomes (LHC) were stable throughout 60 days of observation, and showed interesting effects on wound healing reconstitution. In particular, we observed that 25 µg/mL LHC were already able to induce a higher cell monolayer reconstitution in comparison to the untreated samples and HC treated samples after only 4 h (28% versus 10% and 7%, p = 0.03 and p= 0.003, respectively). The effect was more evident at 24 h in comparison with the untreated control (54% versus 21.2% and 41.6%, p = 0.006 and p = NS, respectively). These results represent a preliminary, but promising, novelty in the delivery strategy of the actives present in the HelixComplex mucus.


Anticancer Effect of STING Agonist-Encapsulated Liposomes on Breast Cancer.

  • Jibing Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Breast cancer is one of the most common cancers worldwide, posing a serious threat to human health. Recently, innate immunity has become a widely discussed topic in antitumor research. The STING pathway is an important component of innate immunity, and several STING agonists have been developed and applied in antitumor research. Dimeric amidobenzimidazole (diABZI) is one STING agonist and is a nucleotide analog with low serological stability and cell membrane permeability. In this study, we prepared diABZI-encapsulated liposomes (dLNPs) using the ammonium sulfate gradient method. The average particle size of the dLNPs was 99.76 ± 0.230 nm, and the encapsulation efficiency was 58.29 ± 0.53%. Additionally, in vivo and in vitro assays showed that the dLNPs had a sustained-release effect and that the circulation time in vivo was longer than 48 h. The expression of IFN-β and IFN-γ was elevated in mice treated with dLNPs. Moreover, we found that dLNPs can recruit CD8+ T cells to tumor tissue and exert antitumor effects. The dLNPs-treated group showed the most significant efficacy: the average tumor volume was 231.46 mm3, which decreased by 78.16% and 54.47% compared to the PBS group and diABZI group. Meanwhile, the hemolysis rate of the dLNPs was 2%, showing high biocompatibility. In conclusion, dLNPs can effectively suppress tumor growth and possess great potential in breast cancer therapy.


Comprehensive Effects of Near-Infrared Multifunctional Liposomes on Cancer Cells.

  • Yiqing Deng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Multifunctional theranostic systems are a recent important development of medical research. We combined the characteristics of near-infrared luminescent quantum dots and thermosensitive magnetoliposomes to develop a multifunctional nano-diagnostic material. This system is based on near-infrared magnetic thermosensitive liposomes, which encapsulate drugs and can control drug localization and release. After incubating cancer cells with the liposomes, the state of the cells was analyzed in real time by near-infrared imaging. Cell viability was significantly inhibited by heat treatment or alternating magnetic field treatment, which thus improved the anti-cancer properties of the liposomes. In the future, by combining near-infrared imaging technology and an external high-frequency alternating magnetic field, we could not only detect cancer cells noninvasively but also conduct image-guided treatments for cancer.


Antiproliferative and Antimicrobial Effects of Rosmarinus officinalis L. Loaded Liposomes.

  • Irina Ielciu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Rosmarinus officinalis L. is a species that is widely known for its culinary and medicinal uses. The purpose of the present study consisted of the evaluation of the antiproliferative and antimicrobial effects of R. officinalis-loaded liposomes (L-R). Characterization of the liposomes was performed by establishing specific parameters. The load of the obtained liposomes was analyzed using an LC-MS method, and antiproliferative assays evaluated the cell viability on a liver adenocarcinoma cell line and on a human hepatic stellate cell line. Antimicrobial assays were performed by agar-well diffusion and by broth microdilution assays. The obtained liposomes showed high encapsulation efficiency, suitable particle size, and good stability. High amounts of caffeic (81.07 ± 0.76), chlorogenic (14.10 ± 0.12), carnosic (20.03 ± 0.16), rosmarinic (39.81 ± 0.35), and ellagic (880.02 ± 0.14) acids were found in their composition, together with other polyphenols. Viability and apoptosis assays showed an intense effect on the cancerous cell line and a totally different pattern on the normal cells, indicating a selective toxicity towards the cancerous ones and an anti-proliferative mechanism. Antimicrobial potential was noticed against all tested bacteria, with a better efficacy towards Gram-positive species. These results further confirm the biological activities of R. officinalis leaf extract, and proposes and characterizes novel delivery systems for their encapsulation, enhancing the biological activities of polyphenols, and overcoming their limitations.


Preparation, Characterization, and Evaluation of Liposomes Containing Oridonin from Rabdosia rubescens.

  • Yinyue Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Due to the remarkable anti-tumor activities of oridonin (Ori), research on Rabdosia rubescens has attracted more and more attention in the pharmaceutical field. The purpose of this study was to extract Ori from R. rubescens by ultrasound-assisted extraction (UAE) and prepare Ori liposomes as a novel delivery system to improve the bioavailability and biocompatibility. Response surface methodology (RSM), namely Box-Behnken design (BBD), was applied to optimize extraction conditions, formulation, and preparation process. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 75.9%, an extraction time of 35.7 min, and a solid/liquid ratio of 1:32.6. Under these optimal conditions, the extraction yield of Ori was 4.23 mg/g, which was well matched with the predicted value (4.28 mg/g). The optimal preparation conditions of Ori liposomes by RSM, with an ultrasonic time of 41.1 min, a soybean phospholipids/drug ratio of 9.6 g/g, and a water bath temperature of 53.4 °C, had higher encapsulation efficiency (84.1%). The characterization studies indicated that Ori liposomes had well-dispersible spherical shapes and uniform sizes with a particle size of 137.7 nm, a polydispersity index (PDI) of 0.216, and zeta potential of -24.0 mV. In addition, Ori liposomes presented better activity than free Ori. Therefore, the results indicated that Ori liposomes could enhance the bioactivity of Ori, being proposed as a promising vehicle for drug delivery.


Formulation of Piperine-Chitosan-Coated Liposomes: Characterization and In Vitro Cytotoxic Evaluation.

  • Syed Sarim Imam‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The present research work is designed to prepare and evaluate piperine liposomes and piperine-chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (-7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.


Encapsulation of α-Pinene in Delivery Systems Based on Liposomes and Cyclodextrins.

  • Zahraa Hammoud‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The essential oil component α-pinene has multiple biological activities. However, its application is limited owing to its volatility, low aqueous solubility, and chemical instability. For the aim of improving its physicochemical properties, α-pinene was encapsulated in conventional liposomes (CLs) and drug-in-cyclodextrin-in-liposomes (DCLs). Hydroxypropyl-β-cyclodextrin/α-pinene (HP-β-CD/α-pinene) inclusion complexes were prepared in aqueous solution, and the optimal solubilization of α-pinene occurred at HP-β-CD:α-pinene molar ratio of 7.5:1. The ethanol-injection method was applied to produce different formulations using saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids in combination with cholesterol. The size, the phospholipid and cholesterol incorporation rates, the encapsulation efficiency (EE), and the loading rate (LR) of α-pinene were determined, and the storage stability of liposomes was assessed. The results showed that α-pinene was efficiently entrapped in CLs and DCLs with high EE values. Moreover, Lipoid S100 CLs displayed the highest LR (22.9 ± 2.2%) of α-pinene compared to the other formulations. Both carrier systems HP-β-CD/α-pinene inclusion complex and Lipoid S100 CLs presented a gradual release of α-pinene. Furthermore, the DPPH radical scavenging activity of α-pinene was maintained upon encapsulation in Lipoid S100 CLs. Finally, it was found that all formulations were stable after three months of storage at 4 °C.


Identification of Abies sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes.

  • Ilona Vanaga‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The needles of conifer trees are one of the richest sources of natural polyprenols. Polyprenol homologs from Abies sibirica L. lipophilic 80% purified extract were analyzed and quantified. In total, 10 peaks (Prenol-11 to Prenol-20) were observed in the ultra-high-performance liquid chromatography-diode array detector (UHPLC-DAD) chromatogram of Siberian fir with the most abundant compound being Prenol-15 (relative amount 37.23 + 0.56% of the total polyprenol yield). Abies sibirica L. polyprenol solubility and incorporation efficiency into liposomes were studied in various commercially available lecithin mixtures (Phosal IP40, Phosal 75SA, and Lipoid P45). The resulting multilamellar polyprenol liposomes were morphologically characterized by Light and Transmission Electron Microscopy, and the liposome size was discovered to be polymodal with the main peak at 1360 nm (90% of the volume). As polyprenols are fully soluble only in lipids, a liposomal formulation based upon co-solubilization and a modified ethanol injection method of polyprenols into the ethanol-phospholipid system was developed for the entrapment and delivery of polyprenols for potential commercial applications in food supplement and cosmetic industries.


Hyaluronic Acid-Decorated Liposomes as Innovative Targeted Delivery System for Lung Fibrotic Cells.

  • Laura Pandolfi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Collagen Tissue Disease-associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases. Liposomes with HA of two molecular weights were prepared and characterized. Targeting efficiency was assessed toward CTD-ILD and BOS cells by flow cytometry and confocal microscopy and immune modulation by RT-PCR and ELISA techniques. HA-liposomes were internalized by CTD-ILD and BOS cells expressing CD44, and this effect increased with higher HA MW. In THP-1 cells, HA-liposomes decreased pro-inflammatory cytokines IL-1β, IL-12, and anti-fibrotic VEGF transcripts but increased TGF-β mRNA. However, upon analyzing TGF-β release from healthy donors-derived monocytes, we found liposomes did not alter the release of active pro-fibrotic cytokine. All liposomes induced mild activation of neutrophils regardless of the presence of HA. HA liposomes could be also applied for lung fibrotic diseases, being endowed with low pro-inflammatory activity, and results confirmed that higher MW HA are associated to an increased targeting efficiency for CD44 expressing LFs-derived from BOS and CTD-ILD patients.


Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics.

  • Yan Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

This study aimed to investigate the in vitro skin permeation and in vivo antineoplastic effect of curcumin by using liposomes as the transdermal drug-delivery system. Soybean phospholipids (SPC), egg yolk phospholipids (EPC), and hydrogenated soybean phospholipids (HSPC) were selected for the preparation of different kinds of phospholipids composed of curcumin-loaded liposomes: C-SPC-L (curcumin-loaded SPC liposomes), C-EPC-L (curcumin-loaded EPC liposomes), and C-HSPC-L (curcumin-loaded HSPC liposomes). The physical properties of different lipsomes were investigated as follows: photon correlation spectroscopy revealed that the average particle sizes of the three types of curcumin-loaded liposomes were 82.37 ± 2.19 nm (C-SPC-L), 83.13 ± 4.89 nm (C-EPC-L), and 92.42 ± 4.56 nm (C-HSPC-L), respectively. The encapsulation efficiency values were found to be 82.32 ± 3.91%, 81.59 ± 2.38%, and 80.77 ± 4.12%, respectively. An in vitro skin penetration study indicated that C-SPC-L most significantly promoted drug permeation and deposition followed by C-EPC-L, C-HSPC-L, and curcumin solution. Moreover, C-SPC-L displayed the greatest ability of all loaded liposomes to inhibit the growth of B16BL6 melanoma cells. Therefore, the C-SPC-L were chosen for further pharmacodynamic evaluation. A significant effect on antimelanoma activity was observed with C-SPC-L, as compared to treatment with curcumin solution in vivo. These results suggest that C-SPC-L would be a promising transdermal carrier for curcumin in cancer treatment.


Deoxyschizandrin Loaded Liposomes on the Suppression Lipid Accumulation in 3T3-L1 Adipocytes.

  • Xiaona Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Deoxyschizandrin (DS) is a bioactive benzocyclooctadiene lignan found in the fruit of Schisandra chinensis. However, poor bioavailability and non-specificity of DS frequently caused low therapeutic efficacy. In the present study, DS-liposome (DS-lipo) was implemented to enhance the hepatic targeting and inhibition effects on adipocyte differentiation in 3T3-L1 cells. The formulations enabled encapsulation of as much as 24.14% DS. The DS-lipo prepared was about 73.08 nm, as measured by laser light scattering (LLS) morphology. In the visual field of a scanning electron microscope (SEM), the liposomes were spherical with similar size and uniform dispersion. Fluorescence live imaging study exhibited hepatic targeting of liposomes in vivo. Furthermore, High-Content Analysis (HCS) imaging microassay analyses revealed DS-lipo and DS reduced cytoplasmic lipid droplet in 3T3-L1 adipocytes, with the IC50 value of 8.68 μM and 31.08 μM, respectively. The lipid droplet accumulation inhibition rate of 10 μM DS-lipo was above 90%, which was even superior to the effect of 30 μM DS solution. The current findings suggest that DS-lipo was a therapeutic strategy for alleviating lipid-associated diseases and nonalcoholic fatty liver disease (NAFLD).


Improvement of Peptide-Based Tumor Immunotherapy Using pH-Sensitive Fusogenic Polymer-Modified Liposomes.

  • Yuta Yoshizaki‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

To establish peptide vaccine-based cancer immunotherapy, we investigated the improvement of antigenic peptides by encapsulation with pH-sensitive fusogenic polymer-modified liposomes for induction of antigen-specific immunity. The liposomes were prepared by modification of egg yolk phosphatidylcholine and l-dioleoyl phosphatidylethanolamine with 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG) and were loaded with antigenic peptides derived from ovalbumin (OVA) OVA-I (SIINFEKL), and OVA-II (PSISQAVHAAHAEINEAPβA), which bind, respectively, to major histocompatibility complex (MHC) class I and class II molecules on dendritic cell (DCs). The peptide-loaded liposomes were taken up efficiently by DCs. The peptides were delivered into their cytosol. Administration of OVA-I-loaded MGlu-HPG-modified liposomes to mice bearing OVA-expressing E.G7-OVA tumors induced the activation of OVA-specific CTLs much more efficiently than the administration of free OVA-I peptide did. Mice strongly rejected E.G7-OVA cells after immunization with OVA-I peptide-loaded MGlu-HPG liposomes, although mice treated with free OVA-I peptide only slightly rejected the cells. Furthermore, efficient suppression of tumor volume was observed when tumor-bearing mice were immunized with OVA-I-peptide-loaded liposomes. Immunization with OVA-II-loaded MGlu-HPG-modified liposomes exhibited much lower tumor-suppressive effects. Results indicate that MGlu-HPG liposomes might be useful for improvement of CTL-inducing peptides for efficient cancer immunotherapy.


Anticancer Efficacy of Targeted Shikonin Liposomes Modified with RGD in Breast Cancer Cells.

  • Xianchun Wen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Shikonin (SHK) has been proven to have a good anti-tumor effect. However, poor water solubility and low bioavailability limit its wide application in clinical practice. In this study, to overcome these drawbacks, RGD-modified shikonin-loaded liposomes (RGD-SSLs-SHK) were successfully prepared. It exhibited excellent physicochemical characteristics including particle size, zeta potential, encapsulation efficiency, and delayed release time. Meanwhile, the targeting activity of the RGD-modified liposomes was demonstrated by flow cytometry and confocal microscopy in the αvβ₃-positive MDA-MB-231 cells. Besides exhibiting greater cytotoxicity in vitro, compared with non-targeted shikonin-loaded liposomes (SSLs-SHK), RGD-SSLs-SHK could also evidently induce apoptosis by decreasing the expression of Bcl-2 and increasing the expression of Bax. It could also inhibit cell proliferation, migration, invasion, and adhesion by reducing the expression of MMP-9 and the level of NF-κB p65, but did not affect the expression of MMP-2 in the MDA-MB-231 cells. Therefore, these findings indicated that the strategy to use RGD-modified liposomes as carriers for targeted delivery of shikonin is a very promising approach to achieve breast cancer targeted therapy.


Tocopheryl Succinate-Induced Structural Changes in DPPC Liposomes: DSC and ANS Fluorescence Studies.

  • Grażyna Neunert‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Recent studies show that alpha-tocopheryl succinate (TS) exhibits selective toxicity against cancer cells. In this study, we investigated the effect of TS's presence on the physico-chemical and structural properties of DPPC liposomes using fluorescence parameters (intensity, lifetime, and position of emission maximum) of 1-anilino-8-naphtalene sulphonate (ANS), differential scanning calorimetry (DSC) and zeta potential methods. Increasing the TS presence in the DPPC gel phase produced ANS fluorescence enhancement with a hypsochromic shift of the maximum. The zeta potential measurements show an increase in the negative surface charge and confirmed that this process is connected with the hydrophobic properties of dye, which becomes located deeper into the interphase region with a progressing membrane disorder. Temperature dependence studies showed that an increase in temperature increases the ANS fluorescence and shifts the ANS maximum emission from 464 to 475 nm indicating a shift from hydrophobic to a more aqueous environment. In the liquid crystalline phase, the quenching of ANS fluorescence occurs due to the increased accessibility of water to the ANS located in the glycerol region. The DSC results revealed that increasing the presence of TS led to the formation of multicomponent DSC traces, indicating the formation of intermediate structures during melting. The present results confirmed that TS embedded into the DPPC membrane led to its disruption due to destabilisation of its structure, which confirmed the measured biophysical parameters of the membrane.


Cell-Penetrating Peptide and Transferrin Co-Modified Liposomes for Targeted Therapy of Glioma.

  • Xi Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Glioma is one of the most aggressive and common malignant brain tumors. Due to the presence of the blood-brain barrier (BBB), the effectiveness of therapeutics is greatly affected. In this work, to develop an efficient anti-glioma drug with targeting and which was able to cross the BBB, cell-penetrating peptides (R8) and transferrin co-modified doxorubicin (DOX)-loaded liposomes (Tf-LPs) were prepared. Tf-LPs possessed a spherical shape and uniform size with 128.64 nm and their ξ-potential was 6.81 mV. Tf-LPs were found to be stable in serum within 48 h. Uptake of Tf-LPs in both U87 and GL261 cells was analyzed by confocal laser scanning microscopy and by flow cytometry. Tf-LPs were efficiently taken up by both U87 and GL261 cells. Moreover, Tf-LPs exhibited sustained-release. The cumulative release of DOX from Tf-LPs reached ~50.0% and showed excellent anti-glioma efficacy. Histology of major organs, including brain, heart, liver, spleen, lungs and kidney, and the bodyweight of mice, all indicated low toxicity of Tf-LPs. In conclusion, Tf-LPs showed great promise as an anti-glioma therapeutic agent.


Liposomes Loaded with Cisplatin and Magnetic Nanoparticles: Physicochemical Characterization, Pharmacokinetics, and In-Vitro Efficacy.

  • Alfonso Toro-Cordova‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

With the aim improving drug delivery, liposomes have been employed as carriers for chemotherapeutics achieving promising results; their co-encapsulation with magnetic nanoparticles is evaluated in this work. The objective of this study was to examine the physicochemical characteristics, the pharmacokinetic behaviour, and the efficacy of pegylated liposomes loaded with cisplatin and magnetic nanoparticles (magnetite) (Cis-MLs). Cis-MLs were prepared by a modified reverse-phase evaporation method. To characterize their physicochemical properties, an evaluation was made of particle size, ζ-potential, phospholipid and cholesterol concentration, phase transition temperature (Tm), the encapsulation efficiency of cisplatin and magnetite, and drug release profiles. Additionally, pharmacokinetic studies were conducted on normal Wistar rats, while apoptosis and the cytotoxic effect were assessed with HeLa cells. We present a method for simultaneously encapsulating cisplatin at the core and also embedding magnetite nanoparticles on the membrane of liposomes with a mean vesicular size of 104.4 ± 11.5 nm and a ζ-potential of -40.5 ± 0.8 mV, affording a stable formulation with a safe pharmacokinetic profile. These liposomes elicited a significant effect on cell viability and triggered apoptosis in HeLa cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: