Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,379 papers

Preparation and Characterization of New Liposomes. Bactericidal Activity of Cefepime Encapsulated into Cationic Liposomes.

  • Maria Luisa Moyá‎ et al.
  • Pharmaceutics‎
  • 2019‎

Cefepime is an antibiotic with a broad spectrum of antimicrobial activity. However, this antibiotic has several side effects and a high degradation rate. For this reason, the preparation and characterization of new liposomes that are able to encapsulate this antibiotic seem to be an important research line in the pharmaceutical industry. Anionic and cationic liposomes were prepared and characterized. All cationic structures contained the same cationic surfactant, N,N,N-triethyl-N-(12-naphthoxydodecyl)ammonium. Results showed a better encapsulation-efficiency percentage (EE%) of cefepime in liposomes with phosphatidylcholine and cholesterol than with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The presence of cholesterol and the quantity of egg-yolk phospholipid in the liposome increased the encapsulation percentage. The bactericidal activity against Escherichia coli of cefepime loaded into liposomes with phosphatidylcholine was measured. The inhibitory zone in an agar plate for free cefepime was similar to that obtained for loaded cefepime. The growth-rate constant of E. coli culture was also measured in working conditions. The liposome without any antibiotic exerted no influence in such a rate constant. All obtained results suggest that PC:CH:12NBr liposomes are biocompatible nanocarriers of cefepime that can be used in bacterial infections against Escherichia coli with high inhibitory activity.


Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes.

  • Aleksandra A Jovanović‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

In the present study, rosehip (Rosa canina L.) extract was successfully encapsulated in phospholipid liposomes using a single-step procedure named the proliposome method. Part of the obtained liposomes was subjected to UV irradiation and non-treated (native) and UV-irradiated liposomes were further characterized in terms of encapsulation efficiency, chemical composition (HPLC analysis), antioxidant capacity, particle size, PDI, zeta potential, conductivity, mobility, and antioxidant capacity. Raman spectroscopy as well as DSC analysis were applied to evaluate the influence of UV irradiation on the physicochemical properties of liposomes. The encapsulation efficiency of extract-loaded liposomes was higher than 90%; the average size was 251.5 nm; the zeta potential was -22.4 mV; and the conductivity was found to be 0.007 mS/cm. UV irradiation did not cause a change in the mentioned parameters. In addition, irradiation did not affect the antioxidant potential of the liposome-extract system. Raman spectroscopy indicated that the extract was completely covered by the lipid membrane during liposome entrapment, and the peroxidation process was minimized by the presence of rosehip extract in liposomes. These results may guide the potential application of rosehip extract-loaded liposomes in the food, pharmaceutical, or cosmetic industries, particularly when liposomal sterilization is needed.


Vitamin C-driven epirubicin loading into liposomes.

  • Dominik Lipka‎ et al.
  • International journal of nanomedicine‎
  • 2013‎

The encapsulation of anticancer drugs in a liposome structure protects the drug during circulation and increases drug accumulation in the cancer tissue and antitumor activity while decreasing drug toxicity. This paper presents a new method of active drug loading based on a vitamin C pH/ion gradient. Formulations were characterized in terms of the following parameters: optimal external pH, time and drug-to-lipid ratio for the purpose of remote loading, and in vitro stability. In the case of the selected drug, epirubicin (EPI), its coencapsulation increases its anticancer activity through a possibly synergistic effect previously reported by other groups for a free nonencapsulated drug/vitamin C cocktail. The method also has another advantage over other remote-loading methods: it allows faster drug release through liposome destabilization at the tumor site, thanks to the very good solubility of the EPI vitamin C salt, as seen on cryogenic transmission electron microscopy images. This influences the drug-release process and increases the anticancer activity of the liposome formulation. The liposomes are characterized as stable, with very good pharmacokinetics (half-life 18.6 hours). The antitumor activity toward MCF-7 and 4T-1 breast cancer cells was higher in the case of EPI loaded via our gradient than via an ammonium sulfate gradient. Finally, the EPI liposomal formulation and the free drug were tested using the murine 4T-1 breast cancer model. The antitumor activity of the encapsulated drug was confirmed (tumor-growth inhibition over 40% from day 16 until the end of the experiment), and the free drug was shown to have no anticancer activity at the tested dose.


An immune response to ovalbumin covalently coupled to liposomes is prevented when the liposomes used contain doxorubicin.

  • P G Tardi‎ et al.
  • Journal of immunological methods‎
  • 1997‎

It is now well established that liposomes with surface associated proteins are immunogenic. Repeated administration of protein coated liposomes elicits the generation of antibodies and the elimination of proteoliposome increases markedly in animals 'immunized' with such liposomes. This immune response compromises the therapeutic potential of liposomal formulations that rely on the use of protein- or peptide-based targeting ligands to enhance cell specificity. Strategies to suppress or inhibit such immune responses must be developed if this technology is going to prove therapeutically viable. This study evaluates whether an immune response to a protein, covalently attached to liposomes by a thioether bond between N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP)-modified-protein and N-(4-(P-maleimidophenyl)butyryl) (MPB)-activated lipids, can be suppressed when the liposomes used contain the anti-cancer drug doxorubicin. To assess this, the highly immunogenic protein ovalbumin was conjugated onto liposomes composed of distearoylphosphatidylcholine/cholesterol (DSPC/Chol) with sufficient poly(ethylene glycol)-modified distearoyl phosphatidylethanolamine (PEG-DSPE) (2 mol%) to prevent liposome aggregation during protein coupling and to engender increased circulation lifetimes. The immune response to these liposomes with and without encapsulated doxorubicin was measured by: (1) monitoring liposome elimination after 3 weekly i.v. injections in C3H/HeJ mice and (2) measuring the anti-ovalbumin antibody levels by an ELISA assay. One week after a single dose of ovalbumin-coated PEG liposomes (50 microg protein/mouse) the immune response resulted in rapid elimination of a second dose of ovalbumin-coated PEG liposomes. Rapid liposome elimination was correlated to generation of high levels (> 9 microg/ml plasma) of circulating anti-ovalbumin IgG. In contrast, anti-ovalbumin antibodies were not detected when the liposomes used contained doxorubicin. Plasma elimination of these drug loaded protein coated liposomes decreased following repeated weekly i.v. doses, an effect that is consistent with liposomal doxorubicin mediated suppression of phagocytic cells in the liver.


Microfluidic-assisted bacteriophage encapsulation into liposomes.

  • Sharon S Y Leung‎ et al.
  • International journal of pharmaceutics‎
  • 2018‎

Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows reproducible mixing in miliseconds on the nanoliter scale. Here we investigated the feasibility of a microfluidic flow focusing setup built from commercially available fittings to encapsulate phages into liposomes. Two types of Pseudomonas phages, PEV2 (Podovirus, ∼65 nm) and PEV40 (Myovirus, ∼220 nm), were used as model phages. A mixture of soy phosphatidylcholine and cholesterol at a ratio of 4:1 dissolved in absolute ethanol with a total solid content of 17.5 mg/mL was injected through the center inlet channel of a cross mixer. Phage suspensions were injected into the cross mixer from the two side channels intersecting with the center channel. The total flow rate (TFR) varied 160-320 µL/min and the organic/aqueous flow rate ratio (FRR) varied 1:3-2:3. The size of liposomes and the encapsulation efficiency both increased with increasing FRR and slightly decreased with increasing TFR. Due to the different size of the two studied phages, the size of liposomes encapsulating PEV2 were smaller (135-218 nm) than those encapsulating the Myovirus PEV40 (261-448 nm). Highest encapsulation efficiency of PEV2 (59%) and PEV40 (50%) was achieved at a TFR of 160 µL/ml and a FRR of 2:3. Generally, the encapsulation efficiency was slightly higher than that obtained from the conventional thin film hydration followed by extrusion method. In summary, the proposed microfluidic technique was capable of encapsulating phages of different size into liposomes with reasonable encapsulation efficiency and minimal titer reduction.


Aromatized liposomes for sustained drug delivery.

  • Yang Li‎ et al.
  • Nature communications‎
  • 2023‎

Insufficient drug loading and leakage of payload remain major challenges in designing liposome-based drug delivery systems. These phenomena can limit duration of effect and cause toxicity. Targeting the rate-limiting step in drug release from liposomes, we modify (aromatized) them to have aromatic groups within their lipid bilayers. Aromatized liposomes are designed with synthetic phospholipids with aromatic groups covalently conjugated onto acyl chains. The optimized aromatized liposome increases drug loading and significantly decreases the burst release of a broad range of payloads (small molecules and macromolecules, different degrees of hydrophilicity) and extends their duration of release. Aromatized liposomes encapsulating the anesthetic tetrodotoxin (TTX) achieve markedly prolonged effect and decreased toxicity in an application where liposomes are used clinically: local anesthesia, even though TTX is a hydrophilic small molecule which is typically difficult to encapsulate. Aromatization of lipid bilayers can improve the performance of liposomal drug delivery systems.


Mannosylated liposomes for targeted gene delivery.

  • Fansheng Kong‎ et al.
  • International journal of nanomedicine‎
  • 2012‎

Liposomes can be modified with different ligands to control their biological properties, such as longevity, targeting ability, and intracellular penetration, in a desired fashion. The aim of this study was to modify liposomes with a novel mannosylated polyethylene glycol-phosphatidylethanolamine (M-PEG-PE) ligand to achieve active targeted gene delivery.


Mechanical Division of Cell-Sized Liposomes.

  • Siddharth Deshpande‎ et al.
  • ACS nano‎
  • 2018‎

Liposomes, self-assembled vesicles with a lipid-bilayer boundary similar to cell membranes, are extensively used in both fundamental and applied sciences. Manipulation of their physical properties, such as growth and division, may significantly expand their use as model systems in cellular and synthetic biology. Several approaches have been explored to controllably divide liposomes, such as shape transformation through temperature cycling, incorporation of additional lipids, and the encapsulation of protein division machinery. However, so far, these methods lacked control, exhibited low efficiency, and yielded asymmetric division in terms of volume or lipid composition. Here, we present a microfluidics-based strategy to realize mechanical division of cell-sized (∼6 μm) liposomes. We use octanol-assisted liposome assembly (OLA) to produce liposomes on chip, which are subsequently flowed against the sharp edge of a wedge-shaped splitter. Upon encountering such a Y-shaped bifurcation, the liposomes are deformed and, remarkably, are able to divide into two stable daughter liposomes in just a few milliseconds. The probability of successful division is found to critically depend on the surface area-to-volume ratio of the mother liposome, which can be tuned through osmotic pressure, and to strongly correlate to the mother liposome size for given microchannel dimensions. The division process is highly symmetric (∼3% size variation between the daughter liposomes) and is accompanied by a low leakage. This mechanical division of liposomes may constitute a valuable step to establish a growth-division cycle of synthetic cells.


Stabilization of Liposomes by Perfluorinated Compounds.

  • Heye Wang‎ et al.
  • ACS omega‎
  • 2018‎

Perfluorinated compounds (PFCs) are emerging persistent environmental contaminants that may be toxic to animals and humans. To gain fundamental insights into the mechanism of their toxicity, the interactions of phosphocholine (PC) liposomes as model membranes were studied with three types of PFCs, including perfluorooctanoic acid, perfluorooctane sulfonate, and perfluorohexanesulfonic acid potassium salt, together with three common surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and sodium 1-heptanesulfonate (SHS). The interactions were systematically characterized by zeta potential measurement, dynamic light scattering, negative-stain transmission electron microscopy, and fluorescence spectroscopy. Unmodified liposomes, calcein-loaded liposomes, and Laurdan dye-embedded liposomes were all tested. By gradually increasing the temperature, the three PFCs and SHS decreased the leakage of calcein-loaded 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposomes, whereas SDS and CTAB increased the leakage. The PFCs that affected the lipid membranes stronger than SHS were attributable to their perfluoroalkyl carbon chains. Packing of the lipids was further studied using Laurdan dye as a probe. Calcein leakage tests also indicated that PFCs inhibited lipid membrane leakage induced by inorganic nanoparticles such as silica and gold nanoparticles. This study confirmed the similar effect of the PFCs as cholesterol in affecting membrane properties and would be helpful for understanding the interaction mechanism of PFCs and cell membranes.


Cryogenic transmission electron microscopy of recombinant tuberculosis vaccine antigen with anionic liposomes reveals formation of flattened liposomes.

  • Christopher B Fox‎ et al.
  • International journal of nanomedicine‎
  • 2014‎

Development of lipid-based adjuvant formulations to enhance the immunogenicity of recombinant vaccine antigens is a focus of modern vaccine research. Characterizing interactions between vaccine antigens and formulation excipients is important for establishing compatibility between the different components and optimizing vaccine stability and potency. Cryogenic transmission electron microscopy (TEM) is a highly informative analytical technique that may elucidate various aspects of protein- and lipid-based structures, including morphology, size, shape, and phase structure, while avoiding artifacts associated with staining-based TEM. In this work, cryogenic TEM is employed to characterize a recombinant tuberculosis vaccine antigen, an anionic liposome formulation, and antigen-liposome interactions. By performing three-dimensional tomographic reconstruction analysis, the formation of a population of protein-containing flattened liposomes, not present in the control samples, was detected. It is shown that cryogenic TEM provides unique information regarding antigen-liposome interactions not detectable by light-scattering-based methods. Employing a suite of complementary analytical techniques is important to fully characterize interactions between vaccine components.


Genetically controlled membrane synthesis in liposomes.

  • Duco Blanken‎ et al.
  • Nature communications‎
  • 2020‎

Lipid membranes, nucleic acids, proteins, and metabolism are essential for modern cellular life. Synthetic systems emulating the fundamental properties of living cells must therefore be built upon these functional elements. In this work, phospholipid-producing enzymes encoded in a synthetic minigenome are cell-free expressed within liposome compartments. The de novo synthesized metabolic pathway converts precursors into a variety of lipids, including the constituents of the parental liposome. Balanced production of phosphatidylethanolamine and phosphatidylglycerol is realized, owing to transcriptional regulation of the activity of specific genes combined with a metabolic feedback mechanism. Fluorescence-based methods are developed to image the synthesis and membrane incorporation of phosphatidylserine at the single liposome level. Our results provide experimental evidence for DNA-programmed membrane synthesis in a minimal cell model. Strategies are discussed to alleviate current limitations toward effective liposome growth and self-reproduction.


Lung targeted liposomes for treating ARDS.

  • Sivan Arber Raviv‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2022‎

Acute Respiratory Distress Syndrome (ARDS), associated with Covid-19 infections, is characterized by diffuse lung damage, inflammation and alveolar collapse that impairs gas exchange, leading to hypoxemia and patient' mortality rates above 40%. Here, we describe the development and assessment of 100-nm liposomes that are tailored for pulmonary delivery for treating ARDS, as a model for lung diseases. The liposomal lipid composition (primarily DPPC) was optimized to mimic the lung surfactant composition, and the drug loading process of both methylprednisolone (MPS), a steroid, and N-acetyl cysteine (NAC), a mucolytic agent, reached an encapsulation efficiency of 98% and 92%, respectively. In vitro, treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages with the liposomes decreased TNFα and nitric oxide (NO) secretion, while NAC increased the penetration of nanoparticles through the mucus. In vivo, we used LPS-induced lung inflammation model to assess the accumulation and therapeutic efficacy of the liposomes in C57BL/6 mice, either by intravenous (IV), endotracheal (ET) or IV plus ET nanoparticles administrations. Using both administration methods, liposomes exhibited an increased accumulation profile in the inflamed lungs over 48 h. Interestingly, while IV-administrated liposomes distributed widely throughout the lung, ET liposomes were present in lungs parenchyma but were not detected at some distal regions of the lungs, possibly due to imperfect airflow regimes. Twenty hours after the different treatments, lungs were assessed for markers of inflammation. We found that the nanoparticle treatment had a superior therapeutic effect compared to free drugs in treating ARDS, reducing inflammation and TNFα, IL-6 and IL-1β cytokine secretion in bronchoalveolar lavage (BAL), and that the combined treatment, delivering nanoparticles IV and ET simultaneously, had the best outcome of all treatments. Interestingly, also the DPPC lipid component alone played a therapeutic role in reducing inflammatory markers in the lungs. Collectively, we show that therapeutic nanoparticles accumulate in inflamed lungs holding potential for treating lung disorders. SIGNIFICANCE: In this study we compare intravenous versus intratracheal delivery of nanoparticles for treating lung disorders, specifically, acute respiratory distress syndrome (ARDS). By co-loading two medications into lipid nanoparticles, we were able to reduce both inflammation and mucus secretion in the inflamed lungs. Both modes of delivery resulted in high nanoparticle accumulation in the lungs, intravenously administered nanoparticles reached lung endothelial while endotracheal delivery reached lung epithelial. Combining both delivery approaches simultaneously provided the best ARDS treatment outcome.


Ehrlich tumor inhibition using doxorubicin containing liposomes.

  • Nihal Saad Elbialy‎ et al.
  • Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society‎
  • 2015‎

Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, DOX in solution or DOX encapsulated within liposomes prepared from DMPC/CHOL/DPPG/PEG-PE (100:100:60:4) in molar ratio. Cytotoxicity assay showed that the IC50 of liposomes containing DOX was greater than that DOX only. Tumor growth inhibition curves in terms of mean tumor size (cm(3)) were presented. All the DOX formulations were effective in preventing tumor growth compared to saline. Treatment with DOX loaded liposomes displayed a pronounced inhibition in tumor growth than treatment with DOX only. Histopathological examination of the entire tumor sections for the various groups revealed marked differences in cellular features accompanied by varying degrees in necrosis percentage ranging from 12% for saline treated mice to 70% for DOX loaded liposome treated mice. The proposed liposomal formulation can efficiently deliver the drug into the tumor cells by endocytosis (or passive diffusion) and lead to a high concentration of DOX in the tumor cells. The study showed that the formulation of liposomal doxorubicin improved the therapeutic index of DOX and had increased anti-tumor activity against Ehrlich tumor models.


Spatiotemporal control of coacervate formation within liposomes.

  • Siddharth Deshpande‎ et al.
  • Nature communications‎
  • 2019‎

Liquid-liquid phase separation (LLPS), especially coacervation, plays a crucial role in cell biology, as it forms numerous membraneless organelles in cells. Coacervates play an indispensable role in regulating intracellular biochemistry, and their dysfunction is associated with several diseases. Understanding of the LLPS dynamics would greatly benefit from controlled in vitro assays that mimic cells. Here, we use a microfluidics-based methodology to form coacervates inside cell-sized (~10 µm) liposomes, allowing control over the dynamics. Protein-pore-mediated permeation of small molecules into liposomes triggers LLPS passively or via active mechanisms like enzymatic polymerization of nucleic acids. We demonstrate sequestration of proteins (FtsZ) and supramolecular assemblies (lipid vesicles), as well as the possibility to host metabolic reactions (β-galactosidase activity) inside coacervates. This coacervate-in-liposome platform provides a versatile tool to understand intracellular phase behavior, and these hybrid systems will allow engineering complex pathways to reconstitute cellular functions and facilitate bottom-up creation of synthetic cells.


Acoustomechanically activatable liposomes for ultrasonic drug uncaging.

  • Mahaveer P Purohit‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Ultrasound-activatable drug-loaded nanocarriers enable noninvasive and spatiotemporally-precise on-demand drug delivery throughout the body. However, most systems for ultrasonic drug uncaging utilize cavitation or heating as the drug release mechanism and often incorporate relatively exotic excipients into the formulation that together limit the drug-loading potential, stability, and clinical translatability and applicability of these systems. Here we describe an alternate strategy for the design of such systems in which the acoustic impedance and osmolarity of the internal liquid phase of a drug-loaded particle is tuned to maximize ultrasound-induced drug release. No gas phase, cavitation, or medium heating is necessary for the drug release mechanism. Instead, a non-cavitation-based mechanical response to ultrasound mediates the drug release. Importantly, this strategy can be implemented with relatively common pharmaceutical excipients, as we demonstrate here by implementing this mechanism with the inclusion of a few percent sucrose into the internal buffer of a liposome. Further, the ultrasound protocols sufficient for in vivo drug uncaging with this system are achievable with current clinical therapeutic ultrasound systems and with intensities that are within FDA and society guidelines for safe transcranial ultrasound application. Finally, this current implementation of this mechanism should be versatile and effective for the loading and uncaging of any therapeutic that may be loaded into a liposome, as we demonstrate for four different drugs in vitro, and two in vivo. These acoustomechanically activatable liposomes formulated with common pharmaceutical excipients promise a system with high clinical translational potential for ultrasonic drug uncaging of myriad drugs of clinical interest.


pH-Controlled Coacervate-Membrane Interactions within Liposomes.

  • Mart G F Last‎ et al.
  • ACS nano‎
  • 2020‎

Membraneless organelles formed by liquid-liquid phase separation are dynamic structures that are employed by cells to spatiotemporally regulate their interior. Indeed, complex coacervation-based phase separation is involved in a multitude of biological tasks ranging from photosynthesis to cell division to chromatin organization, and more. Here, we use an on-chip microfluidic method to control and study the formation of membraneless organelles within liposomes, using pH as the main control parameter. We show that a transmembrane proton flux that is created by a stepwise change in the external pH can readily bring about the coacervation of encapsulated components in a controlled manner. We employ this strategy to induce and study electrostatic as well as hydrophobic interactions between the coacervate and the lipid membrane. Electrostatic interactions using charged lipids efficiently recruit coacervates to the membrane and restrict their movement along the inner leaflet. Hydrophobic interactions via cholesterol-tagged RNA molecules provide even stronger interactions, causing coacervates to wet the membrane and affect the local lipid-membrane structure, reminiscent of coacervate-membrane interactions in cells. The presented technique of pH-triggered coacervation within cell-sized liposomes may find applications in synthetic cells and in studying biologically relevant phase separation reactions in a bottom-up manner.


Formulation and evaluation of celastrol-loaded liposomes.

  • Jie Song‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2011‎

The main purpose of this study was to evaluate the intestinal absorption and the antineoplastic effect of the poorly water-soluble drug celastrol when liposomes were used as oral drug delivery system. Liposomes were prepared by the ethanol-injection method. An optimized liposome formulation composed of phospholipid, cholesterol and Tween-80 resulted in favorable encapsulation efficiency at 98.06 ± 0.94%. Homogeneous and stable particle size of 89.6 ± 7.3 nm and zeta potential of -(87.7 ± 5.8) mV were determined by laser particle size analyzer. Subsequently, the four-site perfusion rat intestinal model revealed that celastrol-loaded liposomes had improved effective permeability compared to the free drug in four intestinal segments (p < 0.05). Moreover, celastrol-loaded liposomes could also inhibit the tumor growth in C57BL/6 mice. These results suggest that liposomes could be a promising perioral carrier for celastrol.


Thioaptamer conjugated liposomes for tumor vasculature targeting.

  • Aman P Mann‎ et al.
  • Oncotarget‎
  • 2011‎

Recent developments in multi-functional nanoparticles offer a great potential for targeted delivery of therapeutic compounds and imaging contrast agents to specific cell types, in turn, enhancing therapeutic effect and minimizing side effects. Despite the promise, site specific delivery carriers have not been translated into clinical reality. In this study, we have developed long circulating liposomes with the outer surface decorated with thioated oligonucleotide aptamer (thioaptamer) against E-selectin (ESTA) and evaluated the targeting efficacy and PK parameters. In vitro targeting studies using Human Umbilical Cord Vein Endothelial Cell (HUVEC) demonstrated efficient and rapid uptake of the ESTA conjugated liposomes (ESTA-lip). In vivo, the intravenous administration of ESTA-lip resulted in their accumulation at the tumor vasculature of breast tumor xenografts without shortening the circulation half-life. The study presented here represents an exemplary use of thioaptamer and liposome and opens the door to testing various combinations of thioaptamer and nanocarriers that can be constructed to target multiple cancer types and tumor components for delivery of both therapeutics and imaging agent.


Triggerable plasmalogen liposomes: improvement of system efficiency.

  • D H Thompson‎ et al.
  • Biochimica et biophysica acta‎
  • 1996‎

A photoactivated liposome release system that is generally applicable for triggered release of encapsulated hydrophilic materials is described. This approach to phototriggered release, derived from the known effects of plasmalogen photooxidation on membrane permeability in whole cells and model membrane systems, relies on producing a lamellar phase change or increase in permeability upon cleaving its constitutive lipids to single-chain surfactants using 630-820 nm light to sensitize the photooxidation of the plasmalogen vinyl ether linkage. Semi-synthetic plasmenylcholine liposomes containing encapsulated calcein and a membrane-bound sensitizer, such as zinc phthalocyanine, tin octabutoxyphthalocyanine, or bacteriochlorophyll a, were prepared by extrusion. Irradiation of air-saturated liposome solutions enhanced membrane permeability toward calcein and Mn2+, and promoted membrane fusion processes compared to non-irradiated or anaerobic controls. Bacteriochlorophyll a sensitization produced the fastest observed photoinitiated release rate from these liposomes (100% calcein release in less than 20 min; 800 nm irradiation at 300 mW); the observed release rate was two orders of magnitude slower for egg lecithin liposomes prepared and irradiated under identical experimental conditions. Liposome aggregation, interlipidic particle formation, and membrane fusion between adjoining liposomes was observed by 31P-NMR, freeze-fracture/freeze-etch TEM, and cryo-TEM as a function of irradiation time. The use of near-infrared sensitizers and the capacity of photolyzed plasmenylcholine liposomes to undergo membrane fusion processes make photodynamic therapy with these liposome-borne sensitizers an attractive adjunct to biochemical targeting methods.


Characterization of liposomes for cancer cell transfection.

  • Svetlana A Tatarkova‎ et al.
  • The open biomedical engineering journal‎
  • 2007‎

We have characterized a broad range of liposome formulations with varying DcChol:DOPE ratio. Subsequent addition of DcChol to liposomes increases its positive surface charge. However, loading the nuclear acids did not neutralize the overall negative surface potential to a similar extent. The liposomes were tested by transfection of DNA in living cancer cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: