2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

The Nasal Solitary Chemosensory Cell Signaling Pathway Triggers Mouse Avoidance Behavior to Inhaled Nebulized Irritants.

  • Ranhui Xi‎ et al.
  • eNeuro‎
  • 2023‎

The nasal epithelium houses a population of solitary chemosensory cells (SCCs). SCCs express bitter taste receptors and taste transduction signaling components and are innervated by peptidergic trigeminal polymodal nociceptive nerve fibers. Thus, nasal SCCs respond to bitter compounds, including bacterial metabolites, and these reactions evoke protective respiratory reflexes and innate immune and inflammatory responses. We tested whether SCCs are implicated in aversive behavior to specific inhaled nebulized irritants using a custom-built dual-chamber forced-choice device. The behavior of mice was recorded and analyzed for the time spent in each chamber. Wild-type (WT) mice exhibited an aversion to 10 mm denatonium benzoate (Den) or cycloheximide and spent more time in the control (saline) chamber. The SCC-pathway knock-out (KO) mice did not exhibit such an aversion response. The bitter avoidance behavior of WT mice was positively correlated with the concentration increase of Den and the number of exposures. Bitter-ageusic P2X2/3 double KO mice similarly showed an avoidance response to nebulized Den, excluding the taste system's involvement and pointing to an SCC-mediated major contributor to the aversive response. Interestingly, SCC-pathway KO mice showed an attraction to higher Den concentrations; however, chemical ablation of the olfactory epithelium eliminated this attraction attributed to the smell of Den. These results demonstrate that activation of SCCs leads to a rapid aversive response to certain classes of irritants with olfaction, but not gustation, contributing to the avoidance behavior during subsequent irritant exposures. This SCC-mediated avoidance behavior represents an important defense mechanism against the inhalation of noxious chemicals.


Expression of taste receptors in solitary chemosensory cells of rodent airways.

  • Marco Tizzano‎ et al.
  • BMC pulmonary medicine‎
  • 2011‎

Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs.


Microvillous cells in the olfactory epithelium express elements of the solitary chemosensory cell transduction signaling cascade.

  • Federica Genovese‎ et al.
  • PloS one‎
  • 2018‎

The nasal cavity hosts an array of chemoresponsive cells, including the extended olfactory system and several other cells involved in detection of and responses to irritants. Solitary chemosensory cells (SCCs), which respond to irritants and bacteria, express the transient receptor potential channel TRPM5 an essential element of the taste transduction-signaling cascade. Microvillous cells (MVCs), non-neuronal cells situated in the apical layer of the main olfactory epithelium, also express TRPM5, but their function has not yet been clarified. TRPM5-positive MVCs, like SCCs, show a cholinergic phenotype expressing choline acetyl transferase (ChAT), but none of the other elements of the bitter taste transduction cascade could be detected. We reexamined TRPM5-positive MVCs with more sensitive gene expression and staining techniques to clarify whether they rely only on TRPM5 and ChAT or express other elements of the taste/SCC transduction cascade. Analyzing existing RNA sequencing data from whole olfactory mucosa and isolated olfactory sensory neurons, we determined that several elements of the taste/SCC transduction cascade, including taste receptors, are expressed in the olfactory mucosa in cells other than olfactory sensory neurons. Immunostaining confirmed the presence TRPM5 and ChAT in a subset of cells of the olfactory mucosa, which also showed the expression of PLCB2, gustducin, and T1R3. Specifically, these cells were identified as TRPM5-positive MVCs. Furthermore, we examined whether MVCs are innervated by trigeminal fibers, similarly to SCCs. Using antibodies against trigeminal nerve markers calcitonin gene-related peptide and substance P, we determined that, despite the cholinergic phenotype, most MVCs in the olfactory mucosa lacked consistent trigeminal innervation. Our findings indicate that MVCs, like SCCs, express all the elements of the bitter taste transduction cascade but that, unlike SCCs, they possess only sparse trigeminal innervation. The cholinergic phenotype of MVCs suggests a modulatory function of the surrounding olfactory epithelium, through the release of acetylcholine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: