Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 176 papers

PID1 is associated to a respiratory endotype related to occupational exposures to irritants.

  • Miora Andrianjafimasy‎ et al.
  • Free radical biology & medicine‎
  • 2021‎

Studying associations between genes and asthma endotypes and interactions with environment could help to identify new susceptibility genes. We used a previously identified asthma endotype characterized by adult-onset asthma, poor lung function, and high level of Fluorescent oxidation products, a marker of damages due to oxidative stress. This endotype was associated with high occupational exposure to irritants. We aimed to investigate the associations between genes related to oxidative stress and this endotype, and if the associations differed according to irritants exposure.


Human risk assessment of inhaled irritants: Role of sensory stimulations from spatially separated nociceptors.

  • Juergen Pauluhn‎ et al.
  • Toxicology‎
  • 2021‎

Contemporary approaches to human health risk assessment for respiratory tract irritants are variable and controversial. This manuscript provides an in-depth analysis and assessment of the applicability of the classical respiratory depression 50 % (RD50) assay with focus on the Log-linear extrapolation of the non-sensory irritant threshold (RD0 or RD10) relative to the contemporary Point of Departure (POD) U.S.-EPA benchmark approach. Three prototypic volatile chemically reactive irritants are used to exemplify the pros and cons of this alternative approach. These irritants differ in physicochemical properties affecting water-solubility and lipophilicity. Depending on these variables, a vapor may preferentially be retained in the extrathoracic region (ET), the tracheobronchial region (TB), and the pulmonary region (PU); although a smooth transition between these regions occurs at increasingly high concentrations. Each region has its specific nociceptors sensing irritants and regional-specific response to injury. The alternative approach using rats identified the chemical-specific critical region of respiratory tract injury. Statistically derived PODs on ET-TB related sensory irritation provide important information for ET-TB irritants but not for PU irritants. The POD of ET-TB irritants from acute and repeated studies decreased substantially. In summary, statistically derived PODs improve the risk assessment of respiratory tract irritants; however, those from repeated exposures should be given preference to those from acute exposures.


Evaluation and application of the RD50 for determining acceptable exposure levels of airborne sensory irritants for the general public.

  • Yu Kuwabara‎ et al.
  • Environmental health perspectives‎
  • 2007‎

The RD(50) (exposure concentration producing a 50% respiratory rate decrease) test evaluates airborne chemicals for sensory irritation and has become an American Society for Testing and Materials (ASTM) standard method. Past studies reported good correlations (R(2)) between RD(50)s and the occupational exposure limits, particularly threshold limit values (TLVs).


Role of TRPA1 receptors in skin inflammation induced by volatile chemical irritants in mice.

  • Maíra Macedo Norões‎ et al.
  • European journal of pharmacology‎
  • 2019‎

Contact dermatitis is a very common inflammatory reaction in the skin, causing not only aesthetic problems but also loss functionality at work. The molecular mechanisms of contact dermatitis induced by chemical irritants are still unclear. Considering that transient receptor potential channels (TRP) may induce neurogenic inflammation and the exacerbation of inflammatory responses, here we investigated the role of transient receptor potential channel ankyrin type-1 (TRPA1) in skin inflammation evoked by chemical irritants. Ear oedema and nociceptive responses elicited by the topical application of xylene and toluene were measured in Swiss mice, wild type and TRPA1 knockout (Trpa1-/-) C57BL/6 mice. Histological analyses were performed in mice subjected to the ear oedema assay. Topical application of xylene and toluene in the mouse ear induced an edematogenic response (0.113 ± 0.008 mm and 0.067 ± 0.011 mm), compared to vehicle (0.008 ± 0.008 mm), assessed by ear thickness measurements and histological analyses. These responses were prevented by topical pretreatment with a selective TRPA1 antagonist, HC-030031 (% inhibition: xylene 36.8 ± 9.4% and toluene 50.7 ± 11.0%), and by the genetic deletion of TRPA1 ((% inhibition: xylene 66.6 ± 16.7% and toluene 75 ± 0%). In addition, the topical application of xylene and toluene to the mouse paw elicited nociceptive responses, which were significantly reduced by oral treatment with HC-030031 ((% of inhibition: 84.9 ± 1.3% and 27.1 ± 8.0%, respectively); nociceptive responses were almost completely abolished in Trpa1-/-mice. Our data suggest that the activation of TRPA1 could be involved in some of the symptoms of irritant-mediated contact dermatitis, such as oedema, pain and neurogenic inflammation.


Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation.

  • C J Saunders‎ et al.
  • F1000Research‎
  • 2013‎

Polymodal neurons of the trigeminal nerve innervate the nasal cavity, nasopharynx, oral cavity and cornea. Trigeminal nociceptive fibers express a diverse collection of receptors and are stimulated by a wide variety of chemicals. However, the mechanism of stimulation is known only for relatively few of these compounds. Capsaicin, for example, activates transient receptor potential vanilloid 1 (TRPV1) channels. In the present study, wildtype (C57Bl/6J) and TRPV1 knockout mice were tested in three behavioral assays for irritation to determine if TRPV1 is necessary to detect trigeminal irritants in addition to capsaicin. In one assay mice were presented with a chemical via a cotton swab and their response scored on a 5 level scale. In another assay, a modified two bottle preference test, which avoids the confound of mixing irritants with the animal's drinking water, was used to assess aversion. In the final assay, an air dilution olfactometer was used to administer volatile compounds to mice restrained in a double-chambered plethysmograph where respiratory reflexes were monitored. TRPV1 knockouts showed deficiencies in the detection of benzaldehyde, cyclohexanone and eugenol in at least one assay. However, cyclohexanone was the only substance tested that appears to act solely through TRPV1.


Concentration × time analyses of sensory irritants revisited: Weight of evidence or the toxic load approach. That is the question.

  • Juergen Pauluhn‎
  • Toxicology letters‎
  • 2019‎

The toxic effects resulting from inhalation exposure depend on both the concentration (C) of the inhaled substance and the exposure duration (t), including the assumptions that the exposure-limiting toxic effect is linearly linked with the accumulated C × t (inhaled dose), and detoxification or compensatory responses diminishing this dose are negligible. This interrelationship applies for both constant and fluctuating concentrations and is usually expressed by the toxic load equation Cn × t = constant effect (k). The toxic load exponent 'n' is derived from both C- and t-dependent exponents with Cb2×tb3 = k with n = b2/b3. This model is taken as a fundamental basis for assessing the acute hazard posed by atmospheric releases of noxious substances, whether deliberate or accidental. Despite its universal use, especially for inhaled irritants, the toxicological significance of this mathematical construct is still discussed controversially. With n = 1 this equation is called Haber's rule. The underlying assumption is that the exposure-based calculated and the actually inhaled Cb2×tb3 are identical. Unlike the calculated dose, the latter is dependent on the test species and its t-dependent change in respiratory minute volume (MV). The retention patterns of inhaled irritant vapors may differ in obligate nasal breathing rodents and oronasally breathing humans as well. Thus, due to the interdependence of n on both C, t and k, this mathematical construct generates a bioassay-specific 'n' which can hardly be considered as human-equivalent, especially following exposure to sensory irritants known to elicit reflex-related changes in MV. The C- and t-dependent impact on Cn × t = k was analyzed with the sensory irritant n-butyl monoisocyanate and compared with t-dependent changes elicited by highly, moderately, and poorly water-soluble sensory irritants ammonia, toluene diisocyanate, and phosgene, respectively. This comparison reveals that n depends on several factors: In cases where MV is instantly and plateau-like depressed with onset of exposure, n appears to be most dependent on Cb2 × MV whereas for a similar slower time-dependent response n becomes more dependent on MV × tb3. For any ensuing risk characterization that focuses on acute non-lethal threshold Cb2 × tb3's, the sensory irritation-related depression in MV must be known to arrive at meaningful conclusions. In summary, both Cn- and t-dependent dosimetry-related pitfalls may occur in acute bioassays on rodents following inhalation exposure to irritants. These must be identified and dealt with judiciously prior to translation to apparently similar human exposures. By default, extrapolations from one duration to another should start with that Cn × t eliciting the least depression in MV with n = 1.


The Nasal Solitary Chemosensory Cell Signaling Pathway Triggers Mouse Avoidance Behavior to Inhaled Nebulized Irritants.

  • Ranhui Xi‎ et al.
  • eNeuro‎
  • 2023‎

The nasal epithelium houses a population of solitary chemosensory cells (SCCs). SCCs express bitter taste receptors and taste transduction signaling components and are innervated by peptidergic trigeminal polymodal nociceptive nerve fibers. Thus, nasal SCCs respond to bitter compounds, including bacterial metabolites, and these reactions evoke protective respiratory reflexes and innate immune and inflammatory responses. We tested whether SCCs are implicated in aversive behavior to specific inhaled nebulized irritants using a custom-built dual-chamber forced-choice device. The behavior of mice was recorded and analyzed for the time spent in each chamber. Wild-type (WT) mice exhibited an aversion to 10 mm denatonium benzoate (Den) or cycloheximide and spent more time in the control (saline) chamber. The SCC-pathway knock-out (KO) mice did not exhibit such an aversion response. The bitter avoidance behavior of WT mice was positively correlated with the concentration increase of Den and the number of exposures. Bitter-ageusic P2X2/3 double KO mice similarly showed an avoidance response to nebulized Den, excluding the taste system's involvement and pointing to an SCC-mediated major contributor to the aversive response. Interestingly, SCC-pathway KO mice showed an attraction to higher Den concentrations; however, chemical ablation of the olfactory epithelium eliminated this attraction attributed to the smell of Den. These results demonstrate that activation of SCCs leads to a rapid aversive response to certain classes of irritants with olfaction, but not gustation, contributing to the avoidance behavior during subsequent irritant exposures. This SCC-mediated avoidance behavior represents an important defense mechanism against the inhalation of noxious chemicals.


Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis.

  • Matthew Habgood‎ et al.
  • Scientific reports‎
  • 2022‎

The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open 'pockets' in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.


Chemotherapeutics Combined with Luminal Irritants: Effects on Small-Intestinal Mannitol Permeability and Villus Length in Rats.

  • Maria-José Cano-Cebrián‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Chemotherapy causes intestinal mucositis, which includes villous atrophy and altered mucosal barrier function. However, there is an uncertainty regarding how the reduced small-intestinal surface area affects the mucosal permeability of the small marker probe mannitol (MW 188), and how the mucosa responds to luminal irritants after chemotherapy. The aims in this study were to determine (i) the relationship between chemotherapy-induced villus atrophy and the intestinal permeability of mannitol and (ii) how the mucosa regulate this permeability in response to luminal ethanol and sodium dodecyl sulfate (SDS). This was investigated by treating rats with a single intraperitoneal dose of doxorubicin, irinotecan, or 5-fluorouracil. After 72 h, jejunum was single-pass perfused and mannitol permeability determined at baseline and after 15 min luminal exposure to 15% ethanol or 5 mg/mL SDS. Tissue samples for morphological analyses were sampled from the perfused segment. All three chemotherapeutics caused a similar 30% reduction in villus length. Mannitol permeability increased with irinotecan (1.3-fold) and 5-fluorouracil (2.5-fold) and was reduced with doxorubicin (0.5-fold), suggesting that it is not epithelial surface area alone that regulates intestinal permeability to mannitol. There was no additional increase in mannitol permeability induced by luminal ethanol or SDS in the chemotherapy-treated rats compared to controls, which may be related to the relatively high basal permeability of mannitol compared to other common low-permeability probes. We therefore suggest that future studies should focus on elucidating the complex interplay between chemotherapy in combination with luminal irritants on the intestinal permeability of other probes.


Alternative in vitro assays to assess the potency of sensory irritants-Is one TRP channel enough?

  • Ramona Lehmann‎ et al.
  • Neurotoxicology‎
  • 2017‎

One important function of the peripheral nervous system is the detection of noxious chemicals in the environment as well as the recognition of tissue damage throughout the body. Transient receptor potential (TRP) ion channels are able to sense a multitude of signaling factors involved in these processes. Via the sensory ganglia these sentinels convey information to the central nervous system, where perceptions of nociception or sensory irritation are generated. From the 28 members of the 6 subfamilies present in mammals, researchers in toxicology paid special attention to TRPA1 and TRPV1 channels. Various xenobiotics (e.g., acrolein, formaldehyde) can open these channels causing sensory irritations and defense mechanisms like sneezing, coughing and lacrimation. Heterologous expression of these two channels and the subsequent investigation of ion fluxes have been proposed as in vitro models for the assessment of sensory irritation. In a series of experiments using acetophenone, isophorone, and 2-ethylhexanol (2-EH) we investigated the effects of these irritants on heterologously expressed TRP channels in comparison to a primary cell culture of trigeminal ganglia neurons of mice. We confirmed acetophenone as a specific TRPA1 agonist that activates the receptor in concentrations >3mM, whereas isophorone specifically activates TRPV1 in concentrations >100μM. 2-EH can activate heterologously expressed TRPA1 concentration-dependently (1 mM-10mM). In Ca2+ imaging we observed 2-EH as an agonist of multiple channels (TRPA1, TRPV1, GPCRs) that activates the trigeminal neurons by application of μM 2-EH concentrations. The convergent results of our experiments further support the specificity of acetophenone and isophorone to activate only one of these investigated TRP channels and a more unspecific activation in the case of 2-EH. However, the results of the two different in vitro systems also showed that both TRPA1 and TRPV1 channel activation is important for the perception of irritants and only the combined and tiered testing might lead to precise estimates describing the potency of a xenobiotic to cause sensory irritation or pain.


Health impacts of chemical irritants used for crowd control: a systematic review of the injuries and deaths caused by tear gas and pepper spray.

  • Rohini J Haar‎ et al.
  • BMC public health‎
  • 2017‎

Chemical irritants used in crowd control, such as tear gases and pepper sprays, are generally considered to be safe and to cause only transient pain and lacrimation. However, there are numerous reports that use and misuse of these chemicals may cause serious injuries. We aimed to review documented injuries from chemical irritants to better understand the morbidity and mortality associated with these weapons.


Intraganglionic signaling as a novel nasal-meningeal pathway for TRPA1-dependent trigeminovascular activation by inhaled environmental irritants.

  • Phillip Edward Kunkler‎ et al.
  • PloS one‎
  • 2014‎

Headache is the most common symptom associated with air pollution, but little is understood about the underlying mechanism. Nasal administration of environmental irritants activates the trigeminovascular system by a TRPA1-dependent process. This report addresses questions about the anatomical pathway involved and the function of TRP channels in this pathway. TRPV1 and TRPA1 are frequently co-localized and interact to modulate function in sensory neurons. We demonstrate here that resiniferatoxin ablation of TRPV1 expressing neurons significantly reduces meningeal blood flow responses to nasal administration of both TRPV1 and TRPA1 agonists. Accordingly resiniferatoxin also significantly reduces TRPV1 and CGRP immunostaining and TRPV1 and TRPA1 message levels in trigeminal ganglia. Sensory neurons of the trigeminal ganglia innervate the nasal epithelium and the meninges, but the mechanism and anatomical route by which nasal administration evokes meningeal vasodilatation is unclear. Double retrograde labeling from the nose and meninges reveals no co-localization of fluorescent label, however nasal and meningeal labeled cells are located in close proximity to each other within the trigeminal ganglion. Our data demonstrate that TRPV1 expressing neurons are important for TRPA1 responses in the nasal-meningeal pathway. Our data also suggest that the nasal-meningeal pathway is not primarily by axon reflex, but may instead result from intraganglionic transmission.


Occlusion of dentinal tubules and selective block of pulp innervation prevent the nociceptive behaviour induced in rats by intradental application of irritants.

  • Khaldoun Rifai‎ et al.
  • Archives of oral biology‎
  • 2004‎

Application of irritants on the exposed dentine of the incisors has been shown to produce aversive behaviour in awake rats. This study aims to demonstrate that the observed aversion is due to the infiltration of irritants through the dentinal tubules and the activation of capsaicin sensitive fibres in the tooth pulp.


Genes Interacting with Occupational Exposures to Low Molecular Weight Agents and Irritants on Adult-Onset Asthma in Three European Studies.

  • Marta Rava‎ et al.
  • Environmental health perspectives‎
  • 2017‎

The biological mechanisms by which cleaning products and disinfectants-an emerging risk factor-affect respiratory health remain incompletely evaluated. Studying genes by environment interactions (G × E) may help identify new genes related to adult-onset asthma.


Intrapleural Administration With Rh-Endostatin and Chemical Irritants in the Control of Malignant Pleural Effusion: A Systematic Review and Meta-Analysis.

  • Cheng-Qiong Wang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

A modified and recombinant human endostatin (Rh-endostatin) is often used in the control of malignant pleural effusion (MPE) through intrapleural infusion.


Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of Cycas revoluta (Cycadaceae).

  • Yasuyuki Hashidoko‎ et al.
  • Scientific reports‎
  • 2019‎

Coralloid roots are specialized tissues of cycads (Cycas revoluta) that are involved in symbioses with nitrogen-fixing Nostoc cyanobacteria. We found that a crude methanolic extract of coralloid roots induced differentiation of the filamentous cell aggregates of Nostoc species into motile hormogonia. Hence, the hormogonium-inducing factor (HIF) was chased using bioassay-based isolation, and the active principle was characterized as a mixture of diacylglycerols (DAGs), mainly composed of 1-palmitoyl-2-linoleoyl-sn-glycerol (1), 1-palmitoyl-2-oleoyl-sn-glycerol (2), 1-stearoyl-2-linolenoyl-sn-glycerol (3), and 1-stearoyl-2-linoleoyl-sn-glycerol (4). Enantioselectively synthesised compound 1 showed a clear HIF activity at 1 nmol (0.6 µg) disc-1 for the filamentous cells, whereas synthesised 2-linoleoyl-3-palmitoyl-sn-glycerol (1') and 1-palmitoyl-2-linoleoyl-rac-glycerol (1/1') were less active than 1. Conversely, synthesised 1-linoleoyl-2-palmitoyl-rac-glycerol (8/8') which is an acyl positional isomer of compound 1 was inactive. In addition, neither 1-monoacylglycerols nor phospholipids structurally related to 1 showed HIF-like activities. As DAGs are protein kinase C (PKC) activators, 12-O-tetradecanoylphorbol-13-acetate (12), urushiol C15:3-Δ10,13,16 (13), and a skin irritant anacardic acid C15:1-Δ8 (14) were also examined for HIF-like activities toward the Nostoc cells. Neither 12 nor 13 showed HIF-like activities, whereas 14 showed an HIF-like activity at 1 nmol/disc. These findings appear to indicate that some DAGs act as hormogonium-inducing signal molecules for filamentous Nostoc cyanobacteria.


Occupational respiratory disorders in Iran: a review of prevalence and inducers.

  • Sima Beigoli‎ et al.
  • Frontiers in medicine‎
  • 2024‎

The link between occupational respiratory diseases (ORD) and exposure to harmful factors that are present in the workplace has been well shown. Factors such as physical activity, age and duration of occupational exposure playing important roles in ORD severity, should be identified in the workplace, their effects on workers health should be studied, and ultimately, exposure to them must be minimized. We carried out a literature review by searching PubMed, Scopus, and Web of Science databases to retrieve studies published from 1999 until the end of April 2023 reporting the prevalence and inducers of ORD in Iran. In Iranian workers, several ORD such as interstitial lung disease, silicosis, occupational asthma, pulmonary inflammatory diseases, chronic obstructive pulmonary diseases, and lung cancers have been reported. It was indicated that ORD mainly occur due to repeated and prolonged exposure to noxious agents in the workplace. We also extracted the prevalence of ORD in different regions of Iran from the retrieved reports. Based on our literature review, the prevalence of ORD among Iranian workers highlights the importance of regular assessment of the risk of exposure to noxious agents in the workplace to develop measures for preventing potential adverse effects.


Pain Perception, Brain Connectivity, and Neurochemistry in Healthy, Capsaicin-Sensitive Subjects.

  • Stefanie Heba‎ et al.
  • Neural plasticity‎
  • 2020‎

Most of the occupational exposure limits (OELs) are based on local irritants. However, exposure to much lower concentrations of irritant substances can also lead to health complaints from workers. Exposure to irritants is often accompanied by strong unpleasant odors, and strong odors might have distracting effects and hence pose a safety risk. The findings obtained in human exposure studies with chemically sensitive, stressed, or anxious persons suggest that their ability to direct attention away from the odorous exposure and to focus on a cognitive task is reduced. In addition, after repeated odor exposure, these persons show signs of sensitization, i.e., difficulties in ignoring or getting used to the exposure. The question arises as to whether certain health conditions are accompanied by a change in sensitivity to odors and irritants, so that these persons are potentially more distracted by odors and irritants and therefore more challenged in working memory tasks than nonsusceptible persons. In our study, susceptible persons with sensory airway hyperreactivity ("capsaicin-sensitive") respond more strongly to mechanical skin stimuli than controls and show altered network connectivity. Capsaicin-sensitive subjects have a lower pain threshold and thus are more sensitive to mechanical skin stimuli. The intrinsic functional connectivity of their saliency network is higher, and the lower the GABAergic tone of the thalamus, the higher their pain sensitivity to mechanical stimuli. It seems that the increased communication between resting-state networks promotes a stronger perception of the sensory input signal. The results can be used to inform about actual risks (i.e., attention diversion and increased risk of accidents) and "pseudo" risks such as odor perception without a negative impact on one's well-being. This way, uncertainties that still prevail in the health assessment of odorous and sensory irritating chemicals could be reduced.


Clinical Pattern and Patch Test Profile of Hand Eczema in Hospital Employees in a Tertiary Care Hospital of North India.

  • Sumaya Zeerak‎ et al.
  • Indian dermatology online journal‎
  • 2021‎

Health care workers form an important occupational group with a high risk of hand eczema. All health care professionals are exposed to a variety of allergens and irritants which can cause hand dermatitis, resulting in significant morbidity.


Selective induction of cell-associated interleukin-1alpha in murine keratinocytes by chemical allergens.

  • E Corsini‎ et al.
  • Toxicology‎
  • 1998‎

Cytokines may be useful tools to discriminate between irritant and allergic contact dermatitis. In the mouse only, it has been demonstrated by other, that contact sensitizers up-regulated keratinocytes-derived interleukin-1alpha (IL-1), macrophage inflammatory protein-2 and interferon induced protein 10 mRNAs. The purpose of this study was to investigate the possibility to use in vitro IL-1 production by a murine keratinocyte cell line for preliminary screening of chemicals for their irritant and/or allergic potential. We investigated the effects of five relevant skin allergens (dinitrochlorobenzene, oxazolone, nickel sulfate, penicillin G and eugenol), two skin irritants (benzalkonium chloride, and methylsalicilate) and two compounds with no sensitizing activity (glycerol and ethanol) on IL-1 production in HEL30 cells. Twenty four hours following treatment, both IL-1 release in conditioned media and cell-associated IL-1 were measured by a specific sandwich ELISA. Under our experimental conditions, only contact sensitizers were able to increase in a dose dependent fashion cell-associated IL-1, confirming the in vivo findings. Both skin irritants and allergens induced the release of IL-1, because of the irritative properties of both chemicals, while ethanol and glycerol failed to induce changes in IL-1 production, confirming the specificity of the proposed test. Taken together, these data indicate that it may be realistic to consider potential skin allergens those chemicals which are able to increase cell-associated IL-1, to consider skin irritants those chemicals which induce only IL-1 release, and to exclude as potential allergens or irritants those chemicals which fail to induce changes in IL-1 production.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: