Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

9c11tCLA modulates 11t18:1 and 9t18:1 induced inflammations differently in human umbilical vein endothelial cells.

  • Jing Li‎ et al.
  • Scientific reports‎
  • 2018‎

Endothelial inflammation is recognized as the initial stage of a multistep process leading to coronary heart disease (CHD). Recently, the different effects of industrial trans fatty acids (elaidic acid, 9t18:1) and ruminant trans fatty acids (vaccenic acid, 11t18:1) on CHD have been reported in epidemiological and animal studies, however, the mechanism was not fully studied. Therefore, the objective of this study was to explore the underlying mechanism by which 9t18:1 and 11t18:1 affect human umbilical vein endothelial cells (HUVECs) inflammation. We found that 9c11t-CLA modulated the inflammation of HUVECs induced by 9t18:1 and 11t18:1. Fatty acid composition, pro-inflammatory factors, phosphorylation of MAPKs, and the TLR4 level in HUVECs altered by 11t18:1 induction, collectively suggest that the bio-conversion of 11t18:1 to 9c11tCLA might be the cause why 11t18:1 and 9t18:1 have distinct influences on endothelial injuries. It was concluded that it is biosynthesis of 9c11t CLA from11t18:1, and the modulation of TLR4-MAPK pathway by 9c11t CLA, which at least partially account for the slight effect of 11t18:1 on endothelial inflammation.


Cytocompatibility of Ti3C2Tx MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms.

  • Jian Huang‎ et al.
  • Chemical research in toxicology‎
  • 2023‎

Two-dimensional (2D) nanomaterials have been widely used in biomedical applications because of their biocompatibility. Considering the high risk of exposure of the circulatory system to Ti3C2Tx, we studied the cytocompatibility of Ti3C2Tx MXene with red blood cells (RBCs) and human umbilical vein endothelial cells (HUVECs) and showed that Ti3C2Tx had excellent compatibility with the two cell lines. Ti3C2Tx at a concentration as high as 200 μg/mL caused a negligible percent hemolysis of 0.8%. By contrast, at the same treatment concentration, graphene oxide (GO) caused a high percent hemolysis of 50.8%. Scanning electron microscopy revealed that RBC structures remained intact in the Ti3C2Tx treatment group, whereas those in the GO group completely deformed, sunk, and shrunk, which resulted in the release of cell contents. This difference can be largely ascribed to the distinct surficial properties of the two nanosheets. In specific, the fully covered surface-terminating -O and -OH groups leading to Ti3C2Tx had a very hydrophilic surface, thereby hindering its penetration into the highly hydrophobic interior of the cell membrane. However, the strong direct van der Waals attractions coordinated with hydrophobic interactions between the unoxidized regions of GO and the lipid hydrophobic tails can still damage the integrity of the cell membranes. In addition, the sharp and keen-edged corners of GO may also facilitate its relatively strong cell membrane damage effects than Ti3C2Tx. Thus, the excellent cell membrane compatibility of Ti3C2Tx nanosheets and their ultraweak capacity to provoke excessive ROS generation endowed them with much better compatibility with HUVECs than GO nanosheets. These results indicate that Ti3C2Tx has much better cytocompatibility than GO and provide a valuable reference for the future biomedical applications of Ti3C2Tx.


Upregulated WEE1 protects endothelial cells of colorectal cancer liver metastases.

  • Peter J Webster‎ et al.
  • Oncotarget‎
  • 2017‎

Surgical resection of colorectal cancer liver metastases (CLM) can be curative, yet 80% of patients are unsuitable for this treatment. As angiogenesis is a determinant of CLM progression we isolated endothelial cells from CLM and sought a mechanism which is upregulated, essential for angiogenic properties of these cells and relevant to emerging therapeutic options. Matched CLM endothelial cells (CLMECs) and endothelial cells of normal adjacent liver (LiECs) were superficially similar but transcriptome sequencing revealed molecular differences, one of which was unexpected upregulation and functional significance of the checkpoint kinase WEE1. Western blotting confirmed that WEE1 protein was upregulated in CLMECs. Knockdown of WEE1 by targeted short interfering RNA or the WEE1 inhibitor AZD1775 suppressed proliferation and migration of CLMECs. Investigation of the underlying mechanism suggested induction of double-stranded DNA breaks due to nucleotide shortage which then led to caspase 3-dependent apoptosis. The implication for CLMEC tube formation was striking with AZD1775 inhibiting tube branch points by 83%. WEE1 inhibitors might therefore be a therapeutic option for CLM and could be considered more broadly as anti-angiogenic agents in cancer treatment.


Escin ameliorates inflammation via inhibiting mechanical stretch and chemically induced Piezo1 activation in vascular endothelial cells.

  • Yuman Wang‎ et al.
  • European journal of pharmacology‎
  • 2023‎

Escin is an active ingredient used in the treatment of phlebitis. However, the pharmacological mechanism of escin remains largely unclear. Here, we aimed to determine the molecular basis for the therapeutic effect of escin. Human umbilical vein endothelial cells (HUVECs) were subjected to shear-stress assays with or without escin. Intracellular Ca2+ levels, inflammatory factors and the activity of NF-κB were measured in endothelial cells (ECs) after mechanical-stretch or Yoda1 activation. Isometric tensions in aortic rings were identified. In addition, murine liver endothelial cells (MLECs) isolated from Piezo1 endothelial specific knockout mice (Piezo1△ EC) were used to explore the role of Piezo1. Our results showed that escin inhibited inflammatory factors, intracellular Ca2+ levels and Yoda1-evoked relaxation of thoracic aorta rings. Cell alignment induced by shear stress was inhibited by escin in HUVECs, and Piezo1 siRNA was used to show that this effect was dependent on Piezo1 channels. Moreover, escin reduced the inflammation and inhibited the activity of NF-κB in ECs with mechanical-stretch, which were insensitive to Piezo1 deletion. SN50, an NF-κB antagonist, significantly inhibited the mechanical stretch-induced inflammatory response. In addition, escin reduced inflammation in ECs subjected to mechanical-stretch, which was insensitive after using NF-κB antagonist. Collectively, our results demonstrate that escin inhibits the mechanical stretch-induced inflammatory response via a Piezo1-mediated NF-κB pathway. This study improves our understanding of a molecular target of escin that mediates its effect on chronic vascular inflammation.


Berberine protects against palmitate-induced endothelial dysfunction: involvements of upregulation of AMPK and eNOS and downregulation of NOX4.

  • Ming Zhang‎ et al.
  • Mediators of inflammation‎
  • 2013‎

Endothelial dysfunction is a critical factor during the initiation of cardiovascular complications in diabetes. Berberine can ameliorate endothelial dysfunction induced by diabetes. However, the underlying mechanisms remain unclear. The aim of this study was to investigate the protective effect and mechanism of berberine on palmitate-induced endothelial dysfunction in human umbilical vein endothelial cells (HUVECs). The cell viability of HUVECs was determined by MTT assays. Nitric oxide (NO) level and production of reactive oxygen species (ROS) were determined in supernatants or in the cultured HUVECs. The mRNA level of endothelial nitric oxide synthase (eNOS) was measured by RT-PCR, and the protein levels of eNOS, p-eNOS, Akt, p-Akt, AMPK, p-AMPK, and NADPH oxidase (NOX4) were analyzed. The results demonstrated that berberine significantly elevated NO levels and reduced the production of ROS. The expressions of eNOS were significantly increased, while NOX4 protein expression was decreased in berberine-treated HUVECs. Moreover, berberine upregulated the protein expression of AMPK and p-AMPK in palmitate-treated HUVECs, but had no effect on the levels of Akt. Therefore, berberine ameliorates palmitate-induced endothelial dysfunction by upregulating eNOS expression and downregulating expression of NOX4. This regulatory effect of berberine may be related to the activation of AMPK.


Transient receptor potential melastatin 4 contributes to early-stage endothelial injury induced by arsenic trioxide.

  • Chun-Xiao Yu‎ et al.
  • Toxicology letters‎
  • 2019‎

To investigate the effect of Arsenic Trioxide (ATO) on endothelial cells injury and explore the role of transient receptor potential melastatin 4 channel (TRPM4) in ATO-induced endothelial injury.


Myeloperoxidase Negatively Regulates Neutrophil-Endothelial Cell Interactions by Impairing αMβ2 Integrin Function in Sterile Inflammation.

  • Alan Tseng‎ et al.
  • Frontiers in medicine‎
  • 2018‎

Interactions of neutrophils with endothelial cells (ECs) and platelets contribute to tissue damage and vascular occlusion under sterile inflammatory conditions. However, the molecular mechanisms regulating the cell-cell interactions remain poorly understood. Previous studies suggest that reactive oxygen species, such as hydrogen peroxide (H2O2), produced from NADPH oxidase 2 play a critical role in platelet-neutrophil interactions by regulating the function of neutrophil αMβ2 integrin during sterile inflammation. In this study, we further demonstrate a crucial role for myeloperoxidase (MPO) in regulating the adhesive function of neutrophils through αMβ2 integrin. Using real-time fluorescence intravital microscopy and in vitro assays, we showed that loss of MPO promoted neutrophil-EC interactions and neutrophil emigration but did not affect neutrophil-platelet interactions under inflammatory conditions. Using genetic and pharmacologic approaches, we found that following agonist stimulation, MPO knockout (KO) neutrophils exhibited a significant increase in extracellular H2O2 and surface level of αMβ2 integrin and that these effects were dependent on MPO activity. Our in vivo studies using an ischemia/reperfusion-induced hepatic inflammation model revealed that compared to wild-type mice, neutrophils from MPO KO mice-displayed a pro-migratory phenotype while ameliorating tissue damage. These results suggest that MPO plays a negative role in the adhesive and migratory function of neutrophils by impairing αMβ2 integrin function under sterile inflammatory conditions.


Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes.

  • Xiuying Li‎ et al.
  • Journal of nanobiotechnology‎
  • 2020‎

Human mesenchymal stem cell (MSC)-derived exosomes (Exos) are a promising therapeutic agent for cell-free regenerative medicine. However, their poor organ-targeting ability and therapeutic efficacy have been found to critically limit their clinical applications. In the present study, we fabricated iron oxide nanoparticle (NP)-labeled exosomes (Exo + NPs) from NP-treated MSCs and evaluated their therapeutic efficacy in a clinically relevant model of skin injury. We found that the Exos could be readily internalized by human umbilical vein endothelial cells (HUVECs), and could significantly promote their proliferation, migration, and angiogenesis both in vitro and in vivo. Moreover, the protein expression of proliferative markers (Cyclin D1 and Cyclin A2), growth factors (VEGFA), and migration-related chemokines (CXCL12) was significantly upregulated after Exo treatment. Unlike the Exos prepared from untreated MSCs, the Exo + NPs contained NPs that acted as a magnet-guided navigation tool. The in vivo systemic injection of Exo + NPs with magnetic guidance significantly increased the number of Exo + NPs that accumulated at the injury site. Furthermore, these accumulated Exo + NPs significantly enhanced endothelial cell proliferation, migration, and angiogenic tubule formation in vivo; moreover, they reduced scar formation and increased CK19, PCNA, and collagen expression in vivo. Collectively, these findings confirm the development of therapeutically efficacious extracellular nanovesicles and demonstrate their feasibility in cutaneous wound repair.


Beneficial Effects of Oleosomes Fused with Human Fibroblast Growth Factor 1 on Wound Healing via the Promotion of Angiogenesis.

  • Yongxin Guo‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

In our previous study, human fibroblast growth factor 1 was successfully fused with oleosomes, energy-storing organelles of seeds, which are considered to be excellent "expression carriers" for substances with a convenient purification process. The present work aimed to explore the beneficial effects of oleosomes fused with human fibroblast growth factor 1 (OLAF) on wound healing. The data showed marked improvements in terms of the angiogenesis, vascular integrity, collagen and inflammation on the wound sites of rats with a full-thickness skin defect. Moreover, the positive role of OLAF in promoting angiogenesis and its possible pathways were clarified in vivo and in vitro. The results showed that the number, length and branches of the blood vessels of the chick embryo chorioallantoic membrane were markedly increased after OLAF treatment. Meanwhile, the in vitro results also revealed that 100 ng/mL OLAF exhibited a promoting effect on the proliferation, migration and tube formation of human umbilical vein endothelial cells. In addition, the potential of OLAF to improve wound angiogenesis was demonstrated to be associated with an up-regulated PI3K/Akt pathway by transcriptome sequencing analysis and the introduction of a PI3K/Akt pathway inhibitor (LY294002). These findings suggest that OLAF has many prospects in the development of drugs for wound healing.


HDN-1 induces cell differentiation toward apoptosis in promyelocytic leukemia cells depending on its selective effect on client proteins of Hsp90.

  • Xin Qi‎ et al.
  • Toxicology and applied pharmacology‎
  • 2021‎

Heat Shock Protein 90 (Hsp90) is frequently upregulated in many cancers, and its inhibition simultaneously blocks multiple signaling pathways, resulting in cell differentiation or apoptosis. However, the complexity of Hsp90 in differentiation and its relation with apoptosis have remained unsettled. In this study, we demonstrated that HDN-1, a C-terminal inhibitor of Hsp90, induced the differentiation of HL-60 cells toward apoptosis. HDN-1 induced the differentiation of cells containing mutant AML1-ETO into mature granulocytes, which was related to its selective effect on client proteins of Hsp90. HDN-1 destabilized AML1-ETO and preserved C/EBPβ at the same time, thereby induced a total increase in C/EBPβ levels because of AML1-ETO negative regulation to C/EBPβ expression. Neither HDN-1 nor 17-AAG (an N-terminal inhibitor of Hsp90) led to the differentiation of NB4 cells because mutant PML-RARα was not affected as a client protein of Hsp90; thus, no additional expression of C/EBPβ was induced. 17-AAG did not affect the differentiation of HL-60 cells due to decreased AML1-ETO and C/EBPβ levels. These results indicate that HDN-1 drives cell differentiation toward apoptosis depending on its selective influence on client proteins of Hsp90, establishing the relationship between differentiation and apoptosis and uncovering the mechanism of HDN-1 in promyelocytic leukemia cell differentiation. Moreover, HDN-1 is very promising for the development of anticancer agents with the induction of differentiation.


Evodiamine inhibits vasculogenic mimicry in HCT116 cells by suppressing hypoxia-inducible factor 1-alpha-mediated angiogenesis.

  • Di Zeng‎ et al.
  • Anti-cancer drugs‎
  • 2021‎

Evodiamine (Evo), a quinazoline alkaloid and one of the most typical polycyclic heterocycles, is mainly isolated from Evodia rugulosa. Vasculogenic mimicry (VM) is a newly identified way of angiogenesis during tumor neovascularization, which is prevalent in a variety of highly invasive tumors. The purpose of this study was to investigate the effect and mechanism of Evo on VM in human colorectal cancer (CRC) cells. The number of VM structures was calculated by the three-dimensional culture of human CRC cells. Wound-healing was used to detect the migration of HCT116 cells. Gene expression was detected by reverse transcription-quantitative PCR assay. CD31/PAS staining was used to identify VM. Western blotting and immunofluorescence were used to detect protein levels. The results showed that Evo inhibited the migration of HCT116 cells, as well as the formation of VM. Furthermore, Evo reduced the expression of hypoxia-inducible factor 1-alpha (HIF-1α), VE-cadherin, VEGF, MMP2, and MMP9. In a model of subcutaneous xenotransplantation, Evo also inhibited tumor growth and VM formation. Our study demonstrates that Evo could inhibit VM in CRC cells HCT116 and reduce the expression of HIF-1α, VE-cadherin, VEGF, MMP2, and MMP9.


HOXB5-activated ANGPT2 promotes the proliferation, migration, invasion and angiogenic effect of esophageal cancer cells via activating ERK/AKT signaling pathway.

  • Jing Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2022‎

Esophageal cancer, which is the eighth most common cancer worldwide, has a poor prognosis and high mortality rate. The present study was designed to investigate the proliferation, migration, invasion and angiogenic effect of the homeobox B5 (HOXB5)/angiopoietin-2 (ANGPT2) interplay in esophageal cancer. The relative expression of ANGPT2 and HOXB5 in esophageal cancer and the association between gene expression was evaluated using data from Gene Expression Profiling Interactive Analysis databases. Following transduction of short hairpin RNA-ANGPT2#1/2 plasmids, ANGPT2 was silenced. Viability, proliferation and invasion of esophageal cancer cells were assessed using CCK-8, 5-EdU, colony formation, wound healing and Transwell assays, respectively. Moreover, the transcriptional activity of ANGPT2 and angiogenesis were detected with luciferase reporter, chromatin immunoprecipitation (CH-IP) and tube formation assays. The results of the present study indicated that ANGPT2 was upregulated, both in esophageal cancer cell lines and tissue and there was an association between the ANGPT2 upregulation and the poor patient prognosis. In addition, ANGPT2 silencing suppressed esophageal cancer cell proliferation, migration, invasion and angiogenesis. The HOXB5 expression was also increased in esophageal cancer, and transcriptionally activated ANGPT2. Moreover, HOXB5 overexpression reversed the effects of ANGPT2 silencing in esophageal cancer cells. Furthermore, ANGPT2 silencing inactivated ERK/AKT signaling, whereas the HOXB5 overexpression blocked this effect. In conclusion, ANGPT2, which was transcriptionally activated by HOXB5, activated the ERK/AKT signaling pathway to promote proliferation, metastasis and angiogenesis of esophageal cancer cells.


LC-MS analysis of Myrica rubra extract and its hypotensive effects via the inhibition of GLUT 1 and activation of the NO/Akt/eNOS signaling pathway.

  • Jing Li‎ et al.
  • RSC advances‎
  • 2020‎

In the area of medicine food homology, Myrica rubra ((Lour.) Siebold & Zucc.) has been used in medicine as an astringent and anti-diarrheal. However, there are few in-depth studies evaluating the antihypertensive chemical components and antihypertensive mechanisms of Myrica rubra. Thus, the aim in this study was to assess the protective effects of an ethanol extract of bayberry (BE) on spontaneous hypertension in rats. In this study, liquid chromatography-mass spectroscopy (LC-MS) coupled with biochemical assays and western blot have been employed to study the protective effects of BE against hypertension. A total of 28 compounds were identified in BE. According to this study, treatment with BE (2 g kg-1) resulted in the potent and persistent reduction of high blood pressure, even after drug withdrawal. The results indicate that the mechanisms of action might involve protection against damage to the vascular structure. Bayberry extract could enhance the endothelium-independent vascular function, inhibiting the abnormal proliferation of smooth muscle by inhibition of glucose transporter-1 (GLUT 1) and regulation of nitric oxide (NO)/serine/threonine kinases (Akt)/endothelial nitric oxide synthase (eNOS). The results of molecular docking and in vitro research indicated six compounds in BE that might be responsible for the antihypertensive effect attributed to GLUT 1, eNOS and Akt, and further in vivo studies are needed to verify this.


Exploring the Mechanism of the miRNA-145/Paxillin Axis in Cell Metabolism During VEGF-A-Induced Corneal Angiogenesis.

  • Wanju Yang‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2021‎

Paxillin (PXN) is a key component of focal adhesions and plays an important role in angiogenesis. The aim of the present study was to investigate the effect of PXN in vascular endothelial growth factor A (VEGF-A)-induced angiogenesis in human umbilical vein endothelial cells (HUVECs).


Synthesis of Biscoumarin and Dihydropyran Derivatives and Evaluation of Their Antibacterial Activity.

  • Jing Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2015‎

In an attempt to find a new class antibacterial agents, a series of biscoumarins (1-4) and dihydropyrans (5-13) were successfully prepared. The molecular structures of four representative compounds, that is, 4, 5, 8 and 12 were confirmed by single crystal X-ray diffraction study. These synthesized compounds were screened for their antibacterial activity in vitro against Staphylococcus aureus (S. aureus ATCC 29213), methicillin-resistant S. aureus (MRSA XJ 75302), vancomycin-intermediate S. aureus (Mu50 ATCC 700699), USA 300 (Los Angeles County clone, LAC), Staphylococcus epidermidis (S. epidermidis ATCC 14990), methicillin-resistant S. epidermidis (MRSE XJ 75284) and Escherichia coli (E. coli ATCC 25922). Additionally, there are two classical intramolecular O-H···O hydrogen bonds (HBs) in biscoumarins 1-4 and the corresponding HB energies were further performed with the density functional theory (DFT) [B3LYP/6-31G*] method.


Selective inhibition of liver cancer growth realized by the intrinsic toxicity of a quantum dot-lipid complex.

  • Dan Shao‎ et al.
  • International journal of nanomedicine‎
  • 2014‎

Using the intrinsic toxicity of nanomaterials for anticancer therapy is an emerging concept. In this work, we discovered that CdTe/CdS quantum dots, when coated with lipids (QD-LC) instead of popular liposomes, polymers, or dendrimers, demonstrated extraordinarily high specificity for cancer cells, which was due to the difference in the macropinocytosis uptake pathways of QD-LC between the cancer cells and the normal cells. QD-LC-induced HepG2 cell apoptosis was concomitant with the activation of the JNK/caspase-3 signaling pathway. Moreover, QD-LC treatment resulted in a delay in the latent period for microtumor formation of mouse hepatocarcinoma H22 cells and inhibited tumor growth, with a reduction of 53.2% in tumor volume without toxicity in major organs after intratumoral administrations to tumor-bearing mice. Our results demonstrate that QD-LC could be a very promising theranostic agent against liver cancer.


Adenovirus-mediated delivery of Sema3A alleviates rheumatoid arthritis in a serum-transfer induced mouse model.

  • Yue Teng‎ et al.
  • Oncotarget‎
  • 2017‎

Rheumatoid arthritis is a chronic autoimmune disease characterized by infiltration of inflammatory cells into the synovium and destruction of cartilage and bone. Macrophages, fibroblast-like synoviocytes (FLS), and osteoclasts are critical cells driving the pathogenesis of RA. Semaphorin 3A (Sema3A) is recently identified as an essential player in the bone homeostasis, however its role in RA progression especially in the macrophage polarization are poorly understood. In the present study, we found that Sems3A levels were significantly decreased in RA serum and synovial fluid compared to OA controls. There was a negative correlation between Sema3A levels and RA severity. Using in vitro cell cultures, we showed for the first time that Sema3A promoted IL-4 induced M2 macrophage polarization, whereas prohibited LPS/IFN-γ induced M1 polarization. Sema3A inhibited VEGF-induced endothelial cells proliferation and migration, suppressed VEGF-mediated invasion and IL-6 production of FLS while stimulating their apoptosis. In addition, Sema3A retarded osteoclastogenesis. In vivo data demonstrated that Sema3A administration attenuated joint tissue damage and the severity of experimental arthritis. Our findings uncovered Sema3A as a promising diagnostic biomarker and novel prevention and treatment strategies in arthritis treatment.


Berberine-based carbon dots for selective and safe cancer theranostics.

  • Fan Zhang‎ et al.
  • RSC advances‎
  • 2018‎

Fluorescent berberine-based carbon dots (Ber-CDs) were prepared through a facile synthesis strategy. Ber-CDs exhibited excellent optical properties for bioimaging and retained the biofunctions of berberine, and enabled selective and safe anti-tumor performance, demonstrating their promising application potential in cancer theranostics.


Blockade of vascular angiogenesis by Aspergillus usamii var. shirousamii-transformed Angelicae Gigantis Radix and Zizyphus jujuba.

  • Sang-Wook Kang‎ et al.
  • Nutrition research and practice‎
  • 2009‎

The matrix metalloproteinases (MMP) play an important role in tumor invasion, angiogenesis and inflammatory tissue destruction. Increased expression of MMP was observed in benign tissue hyperplasia and in atherosclerotic lesions. Invasive cancer cells utilize MMP to degrade the extracellular matrix and vascular basement membrane during metastasis, where MMP-2 has been implicated in the development and dissemination of malignancies. The present study attempted to examine the antiangiogenic activity of the medicinal herbs of Aspergillus usamii var. shirousamii-transformed Angelicae Gigantis Radix and Zizyphus jujube (tAgR and tZj) with respect to MMP-2 production and endothelial motility in phorbol 12-myristate 13-acetate (PMA)- or VEGF-exposed human umbilical vein endothelial cells (HUVEC). Nontoxic tAgR and tZj substantially suppressed PMA-induced MMP-2 secretion. In addition, 25 microg/mL tAgR and tZj prevented vascular endothelial growth factor-stimulated endothelial cell transmigration and tube formation. The results reveal that tAgR and tZj dampened endothelial MMP-2 production leading to endothelial transmigration and tube formation. tAgR and tZj-mediated inhibition of endothelial MMP may boost a therapeutic efficacy during vascular angiogenesis.


Dihydroartemisinin enhances VEGFR1 expression through up-regulation of ETS-1 transcription factor.

  • Na Niu‎ et al.
  • Journal of Cancer‎
  • 2018‎

Angiogenesis is required for tumor growth. Dihydroartemisinin (DHA), a the effective anti-malarial derivative of artemisinin, demonstrated potent anti-angiogenic activities that closely related to the regulation of vascular endothelial growth factor (VEGF) signaling cascade. VEGF receptor 1 (VEGFR1), a receptor in endothelial cells (ECs), coordinately regulate angiogenic activity triggered by ligand-receptor binding. Here we aimed to explore the effects of DHA on VEGFR1 expression in ECs. We found that DHA significantly increases VEGFR1 expression in human umbilical vein endothelial cells (HUVECs). In addition, DHA significantly upregulates the level of V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 1 (ETS-1), a transcriptional factor which binds to the human VEGFR1 promoter. ChIP assay showed that DHA increases ETS-1 binding to the -52 ETS motif on the VEGFR1 promoter. Knockdown of ETS-1 by RNA interference abolished DHA-induced increase of VEGFR1 expression. Taken together, we demonstrated that DHA elevates VEGFR1 expression via up-regulation of ETS-1 transcription in HUVECs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: