Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 8,999 papers

Double suicide genes selectively kill human umbilical vein endothelial cells.

  • Weiguo Jia‎ et al.
  • Virology journal‎
  • 2011‎

To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR) promoter on human umbilical vein endothelial cells.


Extracellular HtrA2 Induces Apoptosis in Human Umbilical Vein Endothelial Cells.

  • Gurpinder Kaur‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The serine protease high-temperature-required protein A2 (HtrA2) has been identified as a key intracellular molecule promoting apoptosis in cells during ischemia reperfusion (IR) injury. IR injury in ST-segment elevation myocardial infarction (STEMI) contributes to overall myocardial damage. HtrA2 has further been shown to be significantly increased in the serum of patients with STEMI. In the present pilot study, we use human umbilical vein endothelial cells (HUVECs) to investigate whether extracellular HtrA2 induces apoptosis using Annexin V staining. Furthermore, we examine whether HtrA2 is released extracellularly after staurosporine-induced apoptosis using ELISA. We find that HtrA2 is released upon induction of apoptosis by staurosporine into the cell culture medium. Furthermore, treatment of HUVECs with extracellular HtrA2-induces apoptosis, while the addition of anti-HtrA2 antibodies reduces both HtrA2- and staurosporine-induced endothelial cell apoptosis. In conclusion, we show here that extracellular HtrA2 induces apoptosis in human endothelial cells, although the exact molecular mechanisms have to be investigated in future.


Molecular Cytogenetics Reveals Mosaicism in Human Umbilical Vein Endothelial Cells.

  • Regina L Binz‎ et al.
  • Genes‎
  • 2022‎

Primary human umbilical vein endothelial cells (HUVECs) are consistently the most reliable in vitro model system for studying the inner lining of blood and lymphatic vessels or the endothelium. Primary human cells originate from freshly isolated tissues without genetic manipulation and generally show a modal number of 46 chromosomes with no structural alterations, at least during early passages. We investigated the cytogenetic integrity of HUVECs with conventional (G-banding) and molecular cytogenetic methods (spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH)). Our G-band data shows two X-chromosomes, confirming these HUVECs originate from a female donor. Notably, some cells consistently exhibit an unfamiliar banding pattern on one X chromosome toward the distal end of the long arm (Xq). Our FISH analysis confirms that approximately 50% of these HUVECs have a deletion of the Xq terminal region. SKY analysis indicates that the deleted region is apparently not integrated into any other chromosome. Finally, we demonstrated the presence of a similar Xq deletion in the daughter cell line, EA.hy926, which was generated by fusing HUVECs with A549 (a thioguanine-resistant clone of adenocarcinomic human alveolar basal epithelial cells). These findings will advance comprehension of HUVECs biology and will augment future endothelial studies.


Zika Virus Induces Autophagy in Human Umbilical Vein Endothelial Cells.

  • Haoran Peng‎ et al.
  • Viruses‎
  • 2018‎

Autophagy is a common strategy for cell protection; however, some viruses can in turn adopt cellular autophagy to promote viral replication. Zika virus (ZIKV) is the pathogen that causes Zika viral disease, and it is a mosquito-borne virus. However, its pathogenesis, especially the interaction between ZIKV and target cells during the early stages of infection, is still unclear. In this study, we demonstrate that infecting human umbilical vein endothelial cells (HUVEC) with ZIKV triggers cellular autophagy. We observed both an increase in the conversion of LC3-I to LC3-II and increased accumulation of fluorescent cells with LC3 dots, which are considered to be the two key indicators of autophagy. The ratio of LC3-II/GAPDH in each group was significantly increased at different times after ZIKV infection at different MOIs, indicating that the production of lipidated LC3-II increased. Moreover, both the ratio of LC3-II/GAPDH and the expression of viral NS3 protein increased with increasing time of viral infection. The expression level of p62 decreased gradually from 12 h post-infection. Expression profile of double fluorescent protein labelling LC3 indicated that the autophagy induced by ZIKV infection was a complete process. We further investigated the role of autophagy in ZIKV replication. We demonstrated that either the treatment with inhibitors of autophagosomes formation or short hairpin RNA targeting the Beclin-1 gene, which is critical for the formation of autophagosomes, significantly reduced viral production. Taken together, our results indicate that ZIKV infection induces autophagy of HUVEC, and inhibition of ZIKV-induced autophagy restrains viral replication.


Ketamine ameliorates hypoxia-induced endothelial injury in human umbilical vein endothelial cells.

  • Xiaohui Zhou‎ et al.
  • Clinics (Sao Paulo, Brazil)‎
  • 2020‎

Hypoxia leads to endothelial cell inflammation, apoptosis, and damage, which plays an important role in the complications associated with ischemic cardiovascular disease. As an oxidoreductase, p66Shc plays an important role in the regulation of reactive oxygen species (ROS) production and apoptosis. Ketamine is widely used in clinics. This study was designed to assess the potential protective effect of ketamine against hypoxia-induced injury in human umbilical vein endothelial cells (HUVECs). Moreover, we explored the potential mechanism by which ketamine protected against hypoxia-induced endothelial injury.


KNDC1 knockdown protects human umbilical vein endothelial cells from senescence.

  • Chunyan Zhang‎ et al.
  • Molecular medicine reports‎
  • 2014‎

KNDC1 (kinase noncatalytic C-lobe domain containing 1), a brain-specific Ras guanine nucleotide exchange factor, controls the negative regulation of neuronal dendrite growth. However, the effect of KNDC1 on cellular senescence remains to be elucidated. The present study investigated the impact of KNDC1 knockdown on human endothelial cell senescence and the mechanisms underlying this effect. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as a model of biological aging. Senescence‑associated β-galactosidase staining was used to detect cellular senescence and flow cytometry was employed to determine cell cycle progression. Quantitative polymerase chain reaction (qPCR) and western blot analysis were utilized to investigate mRNA transcription and protein expression. In the HUVECs, a senescence-like phenotypes developed with increasing passage number in vitro, which were associated with a progressive increase in the transcription and expression of KNDC1. KNDC1 knockdown promoted cell proliferation and partially reversed cellular senescence and cell cycle arrest in the G0/G1 phase in aging HUVECs. Investigations into the mechanism underlying this effect demonstrated that KNDC1 knockdown promoted HUVEC proliferation via the extracellular signal-regulated kinase signaling pathway and delayed HUVEC senescence by inhibiting the p53-p21-p16 transduction cascade. In addition, the promotion of the capillary tube network formation and the increased expression of endothelial nitric oxide synthase revealed that the activity and function of endothelial cells were enhanced. In conclusion, KNDC1 knockdown delayed endothelial cell senescence and promoted HUVEC activity and function. These results demonstrated that KNDC1 may be a novel therapeutic target for the development of agents to extend human life.


Generation of iPSC line epiHUVEC from human umbilical vein endothelial cells.

  • Peggy Matz‎ et al.
  • Stem cell research‎
  • 2015‎

Human umbilical vein endothelial cells (HUVECs) were used to generate the iPSC line epiHUVEC employing a combination of three episomal-based plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and KLF4. Pluripotency was confirmed both in vivo and in vitro. The transcriptome profile of epiHUVEC and the human embryonic stem cell line - H1 have a Pearson correlation of 0.899.


Intracellular acidification increases adenosine transport in human umbilical vein endothelial cells.

  • Natalia Celis‎ et al.
  • Placenta‎
  • 2017‎

Adenosine is taken up via human equilibrative nucleoside transporters 1 (hENT1) and 2 (hENT2) at a physiological extracellular pH (pHo ∼7.4) in human umbilical vein endothelial cells (HUVECs). Acidic pHo increases the uptake of adenosine and 5-hydroxytryptamine (5HT) via hENT4 in this cell type. However, modulation of hENT1 and hENT2 transport activity by the pHi is unknown. We investigated whether hENT1 and hENT2-adenosine transport was regulated by acidic pHi.


MicroRNAs Influence the Migratory Ability of Human Umbilical Vein Endothelial Cells.

  • Zhaohui Wang‎ et al.
  • Genes‎
  • 2022‎

To identify miRNAs that are involved in cell migration in human umbilical vein endothelial cells (HUVECs), we employed RNA sequencing under high glucose incubation and text mining within the databases miRWalk and TargetScanHuman using 83 genes that regulate HUVECs migration. From both databases, 307 predicted miRNAs were retrieved. Differentially expressed miRNAs were determined by exposing HUVECs to high glucose stimulation, which significantly inhibited the migratory ability of HUVECs as compared to cells cultured in normal glucose. A total of 35 miRNAs were found as differently expressed miRNAs in miRNA sequencing, and 4 miRNAs, namely miR-21-3p, miR-107, miR-143-3p, and miR-106b-5p, were identified as overlapping hits. These were subjected to hub gene analysis and pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG), identifing 71 pathways which were influenced by all four miRNAs. The influence of all four miRNAs on HUVEC migration was phenomorphologically confirmed. miR21 and miR107 promoted migration in HUVECs while miR106b and miR143 inhibited migration. Pathway analysis also revealed eight shared pathways between the four miRNAs. Protein-protein interaction (PPI) network analysis was then performed to predict the functionality of interacting genes or proteins. This revealed six hub genes which could firstly be predicted to be related to HUVEC migration.


Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach.

  • A Billal Sultani‎ et al.
  • Scientific reports‎
  • 2016‎

Cryopreservation of human umbilical vein endothelial cells (HUVECs) facilitated their commercial availability for use in vascular biology, tissue engineering and drug delivery research; however, the key variables in HUVEC cryopreservation have not been comprehensively studied. HUVECs are typically cryopreserved by cooling at 1 °C/min in the presence of 10% dimethyl sulfoxide (DMSO). We applied interrupted slow cooling (graded freezing) and interrupted rapid cooling with a hold time (two-step freezing) to identify where in the cooling process cryoinjury to HUVECs occurs. We found that linear cooling at 1 °C/min resulted in higher membrane integrities than linear cooling at 0.2 °C/min or nonlinear two-step freezing. DMSO addition procedures and compositions were also investigated. By combining hydroxyethyl starch with DMSO, HUVEC viability after cryopreservation was improved compared to measured viabilities of commercially available cryopreserved HUVECs and viabilities for HUVEC cryopreservation studies reported in the literature. Furthermore, HUVECs cryopreserved using our improved procedure showed high tube forming capability in a post-thaw angiogenesis assay, a standard indicator of endothelial cell function. As well as presenting superior cryopreservation procedures for HUVECs, the methods developed here can serve as a model to optimize the cryopreservation of other cells.


Urotensin II induces interleukin 8 expression in human umbilical vein endothelial cells.

  • Chung-Yi Lee‎ et al.
  • PloS one‎
  • 2014‎

Urotensin II (U-II), an 11-amino acid peptide, exerts a wide range of actions in cardiovascular systems. Interleukin-8 (IL-8) is secreted by endothelial cells, thereby enhancing endothelial cell survival, proliferation, and angiogenesis. However, the interrelationship between U-II and IL-8 as well as the detailed intracellular mechanism of U-II in vascular endothelial cells remain unclear. The aim of this study was to investigate the effect of U-II on IL-8 expression and to explore its intracellular mechanism in human umbilical vein endothelial cells.


Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells.

  • Xinying Wu‎ et al.
  • International journal of nanomedicine‎
  • 2010‎

Iron oxide nanoparticles (IONPs) have been employed for hyperthermia treatments, stem cell therapies, cell labeling, and imaging modalities. The biocompatibility and cytotoxic effects of iron oxide nanoparticles when used in biomedical applications, however, are an ongoing concern. Endothelial cells have a critical role in this research dealing with tumors, cardiovascular disease and inflammation. However, there is little information dealing with the biologic effects of IONPs on the endothelial cell. This paper deals with the influence of dextran and citric acid coated IONPs on the behavior and function of human umbilical vein endothelial cells (HUVECs). After exposing endothelial cells to IONPs, dose-dependent effects on HUVECs viability, cytoskeleton and function were determined. Both citric acid and dextran coated particles appeared to be largely internalized by HUVECs through endocytosis and contribute to eventual cell death possibly by apoptosis. Cytoskeletal structures were greatly disrupted, as evidenced by diminished vinculin spots, and disorganized actin fiber and tubulin networks. The capacity of HUVECs to form a vascular network on Matrigel™ diminished after exposure to IONPs. Cell migration/invasion were inhibited significantly even at very low iron concentrations (0.1 mM). The results of this study indicate the great importance of thoroughly understanding nanoparticle-cell interactions, and the potential to exploit this understanding in tumor therapy applications involving IONPs as thermo/chemoembolization agents.


Pinoresinol Diglucoside Alleviates oxLDL-Induced Dysfunction in Human Umbilical Vein Endothelial Cells.

  • Jinpeng Yao‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2016‎

Atherosclerotic cardiovascular diseases are the leading causes of morbidity and mortality worldwide. Deposition of oxidized low-density lipoprotein (oxLDL) is one of the initiators and promoters of atherosclerosis. Eucommia lignans were shown to possess antihypertensive effects. This study aimed to investigate the effects of pinoresinol diglucoside (PD), a Eucommia lignan, on oxLDL-induced endothelial dysfunction. HUVECs were treated with oxLDL and/or PD followed by assessing radical oxygen species (ROS), apoptosis, nitrogen oxide (NO), malondialdehyde (MDA), and superoxide dismutase (SOD) activity with specific assays kits, mRNA levels with quantitative real-time polymerase chain reaction (PCR), and protein levels with western blot. PD abolished oxLDL-induced ROS and MDA production, apoptosis, upregulation of lectin-like oxidized LDL recptor-1 (LOX-1), intercellular Adhesion Molecule 1 (ICAM-1), and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB), and activation of p38MAPK (mitogen-activated protein kinases)/NF-κB signaling. Meanwhile, PD alleviated oxLDL-caused inhibition of SOD activity, eNOS expression, and NO production. These data demonstrated that PD was effective in protecting endothelial cells from oxLDL-caused injuries, which guarantees further investigation on the clinical benefits of PD on cardiovascular diseases.


HSPA12B inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells.

  • Jun Wu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein-HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound-healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT-qPCR and Western blot, respectively. The release of cytokines interleukin-6 and tumour necrosis factor-α was measured by ELISA. HSPA12B suppressed LPS-induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS-induced up-regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS-induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS-induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway.


CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells.

  • Min Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Angiogenesis is the process by which new vessels form from existing vascular networks. Human umbilical vein endothelial cells (HUVECs) may contribute to the study of vascular repair and angiogenesis. The chemokine CXCL12 regulates multiple cell functions, including angiogenesis, mainly through its receptor CXCR4. In contrast to CXCL12/CXCR4, few studies have described roles for CXCR7 in vascular biology, and the downstream mechanism of CXCR7 in angiogenesis remains unclear. The results of the present study showed that CXCL12 dose-dependently enhanced angiogenesis in chorioallantoic membranes (CAMs) and HUVECs. The specific activation of CXCR7 with TC14012 (a CXCR7 agonist) resulted in the significant induction of tube formation in HUVECs and in vivo. Further evidence suggested that CXCL12 induced directional polarization and migration in the HUVECs, which is necessary for tube formation. Moreover, CXCR7 translocalization was observed during the polarization of HUVECs in stripe assays. Finally, treatment with TC14012 also significantly increased PI3K/Akt phosphorylation, and tube formation was blocked by treating HUVECs with an Akt inhibitor. Overall, this study indicated that CXCL12-stimulated CXCR7 acts as a functional receptor to activate Akt for angiogenesis in HUVECs and that CXCR7 may be a potential target molecule for endothelial regeneration and repair after vascular injury.


Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells.

  • Hiroshi Izuta‎ et al.
  • BMC complementary and alternative medicine‎
  • 2009‎

Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs).


Biphasic Effects of Blue Light Irradiation on Human Umbilical Vein Endothelial Cells.

  • Kejia Kan‎ et al.
  • Biomedicines‎
  • 2021‎

Blue light regulates biological function in various cells, such as proliferation, oxidative stress, and cell death. We employed blue light illumination on human umbilical vein endothelial cells utilizing a LED device at 453 nm wavelength and revealed a novel biphasic response on human umbilical vein endothelial cells (HUVECs). The results showed that low fluence blue light irradiation promoted the fundamental cell activities, including cell viability, migration and angiogenesis by activating the angiogenic pathways such as the VEGF signaling pathway. In contrast, high fluence illumination caused the opposite effect on those activities by upregulating pro-apoptotic signaling cascades like ferroptosis, necroptosis and the p53 signaling pathways. Our results provide an underlying insight into photobiomodulation by blue light and may help to implement potential treatment strategies for treating angiogenesis-dependent diseases.


Curcumin Protects Human Umbilical Vein Endothelial Cells against H2O2-Induced Cell Injury.

  • Jipeng Ouyang‎ et al.
  • Pain research & management‎
  • 2019‎

Migraine is a prevalent neurological disorder which causes a huge economic burden on society. It is thought to be a neurovascular disease with oxidative stress might be involved. Curcumin, one of the major ingredients of turmeric, has potent antioxidative and anti-inflammatory properties, but whether it could be used as a potential treatment for migraine remains to be explored. In the present study, human umbilical vein endothelial cells (HUVECs) were pretreated with various concentrations of curcumin (0 μM, 10 μM, 20 μM, 30 μM, 40 μM, and 50 μM) for 12 h, thereby exposed to H2O2 (100 μM) for another 12 h. The viability of HUVECs was tested by the CCK-8 assay, and the activities of antioxidant enzymes including superoxide dismutase (SOD) and glutathione (GSH) were also examined. Intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) were assayed to determine H2O2-induced oxidative stress. In addition, several cell death-related genes (p53, p21, Bax, and Bcl-2) were detected by PCR, and an apoptosis-related protein (caspase3) was evaluated by western blotting. Our results showed that curcumin improved the H2O2-induced decrease of cell viability and antioxidative enzyme activities and decreased the level of oxidative stress. As a conclusion, curcumin could mitigate H2O2-induced oxidative stress and cell death in HUVECs and may be a potential therapeutic drug for migraine.


Integrated Transcriptomic and Proteomic Analysis of Primary Human Umbilical Vein Endothelial Cells.

  • Anil K Madugundu‎ et al.
  • Proteomics‎
  • 2019‎

Understanding the molecular profile of every human cell type is essential for understanding its role in normal physiology and disease. Technological advancements in DNA sequencing, mass spectrometry, and computational methods allow us to carry out multiomics analyses although such approaches are not routine yet. Human umbilical vein endothelial cells (HUVECs) are a widely used model system to study pathological and physiological processes associated with the cardiovascular system. In this study, next-generation sequencing and high-resolution mass spectrometry to profile the transcriptome and proteome of primary HUVECs is employed. Analysis of 145 million paired-end reads from next-generation sequencing confirmed expression of 12 186 protein-coding genes (FPKM ≥0.1), 439 novel long non-coding RNAs, and revealed 6089 novel isoforms that were not annotated in GENCODE. Proteomics analysis identifies 6477 proteins including confirmation of N-termini for 1091 proteins, isoforms for 149 proteins, and 1034 phosphosites. A database search to specifically identify other post-translational modifications provide evidence for a number of modification sites on 117 proteins which include ubiquitylation, lysine acetylation, and mono-, di- and tri-methylation events. Evidence for 11 "missing proteins," which are proteins for which there was insufficient or no protein level evidence, is provided. Peptides supporting missing protein and novel events are validated by comparison of MS/MS fragmentation patterns with synthetic peptides. Finally, 245 variant peptides derived from 207 expressed proteins in addition to alternate translational start sites for seven proteins and evidence for novel proteoforms for five proteins resulting from alternative splicing are identified. Overall, it is believed that the integrated approach employed in this study is widely applicable to study any primary cell type for deeper molecular characterization.


PM2.5 exposure decreases viability, migration and angiogenesis in human umbilical vein endothelial cells and human microvascular endothelial cells.

  • Shengguang Chen‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Previous studies have confirmed that exposure to particulate matter with a diameter of ≤2.5 µm (PM2.5) is associated with inflammation. PM2.5 decreases cardiac cell viability and increases apoptosis through overproduction of reactive oxygen species (ROS). In the present study, the role of PM2.5 in ECs was investigated in vitro. Human umbilical vein endothelial cells and human microvascular endothelial cells (ECs) were incubated with PM2.5 (100‑800 µg/ml) to investigate the effects of PM2.5 on EC viability, migration, tube formation and intracellular levels of ROS. Cell viability and cell apoptosis were determined by MTT assay and flow cytometry analysis. Cell migration was assessed using a Boyden chamber assay, and tube formation was determined by matrigel assay. Tumor necrosis factor‑α and interleukin‑8 levels were measured by ELISA, and ROS levels were assessed with 2',7'‑dichlorofluorescin diacetate. The results indicated that PM2.5 decreases EC viability and increases EC apoptosis in a concentration‑dependent manner. PM2.5 also decreased EC tube formation in a dose‑dependent manner. The results also demonstrated that PM2.5 suppresses adhesion to EC extracellular matrix proteins. Furthermore, PM2.5 exposure significantly induced ROS generation, indicative of oxidative stress. Finally, it was demonstrated that PM2.5 decreased angiogenesis in vivo. These results suggested that repeated exposure to PM2.5 induces vascular inflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: