2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies.

  • Robert Root-Bernstein‎
  • International journal of molecular sciences‎
  • 2017‎

Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS). Quantitative enzyme-linked immunoadsorption assays (ELISA) demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10-8 to 10-9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.


Identification of Novel Nucleocapsid Chimeric Proteins Inhibiting HIV-1 Replication.

  • Hae-In Kim‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The positive transcription elongation factor b (P-TEFb) is an essential factor that induces transcription elongation and is also negatively regulated by the cellular factor HEXIM1. Previously, the chimeric protein HEXIM1-Tat (HT) was demonstrated to inhibit human immunodeficiency virus-1 (HIV)-1 transcription. In this study, we attempted to develop an improved antiviral protein that specifically binds viral RNA (vRNA) by fusing HT to HIV-1 nucleocapsid (NC). Thus, we synthesized NC-HEXIM1-Tat (NHT) and HEXIM1-Tat-NC (HTN). NHT and HTN inhibited virus proliferation more effectively than HT, and they did not attenuate the function of HT. Notably, NHT and HTN inhibited the infectivity of the progeny virus, whereas HT had no such effect. NHT and HTN selectively and effectively interacted with vRNA and inhibited the proper packaging of the HIV-1 genome. Taken together, our results illustrated that the novel NC-fused chimeric proteins NHT and HTN display novel mechanisms of anti-HIV effects by inhibiting both HIV-1 transcription and packaging.


Regulation of Epstein-Barr Virus Minor Capsid Protein BORF1 by TRIM5α.

  • Lih-Tsern Lin‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

TRIM5α is a host anti-retroviral restriction factor that destroys human immunodeficiency virus (HIV) virions and triggers innate immune signaling. TRIM5α also mediates the autophagic degradation of target proteins via TRIMosome formation. We previously showed that TRIM5α promotes Epstein-Barr virus (EBV) Rta ubiquitination and attenuates EBV lytic progression. In this study, we sought to elucidate whether TRIM5α can interact with and induce the degradation of EBV capsid proteins. Glutathione S-transferase (GST) pulldown and immunoprecipitation assays were conducted to identify interacting proteins, and mutants were generated to investigate key binding domains and ubiquitination sites. Results showed that TRIM5α binds directly with BORF1, an EBV capsid protein with a nuclear localization signal (NLS) that enables the transport of EBV capsid proteins into the host nucleus to facilitate capsid assembly. TRIM5α promotes BORF1 ubiquitination, which requires the surface patch region in the TRIM5α PRY/SPRY domain. TRIM5α expression also decreases the stability of BORF1(6KR), a mutant with all lysine residues mutated to arginine. However, chloroquine treatment restores the stability of BORF1(6KR), suggesting that TRIM5α destabilizes BORF1 via direct recognition of its substrate for autophagic degradation. These results reveal novel insights into the antiviral impact of TRIM5α beyond retroviruses.


Profiles of Long Non-Coding RNAs and mRNA Expression in Human Macrophages Regulated by Interleukin-27.

  • Xiaojun Hu‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Macrophages play an essential role in the immune system. Recent studies have shown that long non-coding RNAs (lncRNAs) can regulate genes encoding products involved in the immune response. Interleukin (IL)-27 is a member of the IL-6/IL-12 family of cytokines with broad anti-viral effects that inhibits human immunodeficiency virus (HIV) type-1 and herpes simplex virus (HSV). However, little is known about the role of lncRNAs in macrophages affected by IL-27. Therefore, we investigated the expression profiles of mRNA and lncRNA in human monocyte-derived macrophages (MDMs) regulated by IL-27. Monocytes were differentiated in the presence of macrophage-colony stimulatory factor (M-CSF)- or human AB serum with or without IL-27, and these cells were the subject for the profile analysis using RNA-Seq. We identified 146 lncRNAs (including 88 novel ones) and 434 coding genes were differentially regulated by IL-27 in both M-CSF- and AB serum-induced macrophages. Using weighted gene co-expression network analysis, we obtained four modules. The immune system, cell cycle, and regulation of complement cascade pathways were enriched in different modules. The network of mRNAs and lncRNAs in the pathways suggest that lncRNAs might regulate immune activity in macrophages. This study provides potential insight into the roles of lncRNA in macrophages regulated by IL-27.


Establishment and Characterisation by Expression Microarray of Patient-Derived Xenograft Panel of Human Pancreatic Adenocarcinoma Patients.

  • Sandra Roche‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Pancreatic cancer remains among the most lethal cancers worldwide, with poor early detection rates and poor survival rates. Patient-derived xenograft (PDX) models have increasingly been used in preclinical and clinical research of solid cancers to fulfil unmet need. Fresh tumour samples from human pancreatic adenocarcinoma patients were implanted in severe combined immunodeficiency (SCID) mice. Samples from 78% of treatment-naïve pancreatic ductal adenocarcinoma patients grew as PDX tumours and were confirmed by histopathology. Frozen samples from F1 PDX tumours could be later successfully passaged in SCID mice to F2 PDX tumours. The human origin of the PDX was confirmed using human-specific antibodies; however, the stromal component was replaced by murine cells. Cell lines were successfully developed from three PDX tumours. RNA was extracted from eight PDX tumours and where possible, corresponding primary tumour (T) and adjacent normal tissues (N). mRNA profiles of tumour vs. F1 PDX and normal vs. tumour were compared by Affymetrix microarray analysis. Differential gene expression showed over 5000 genes changed across the N vs. T and T vs. PDX samples. Gene ontology analysis of a subset of genes demonstrated genes upregulated in normal vs. tumour vs. PDX were linked with cell cycle, cycles cell process and mitotic cell cycle. Amongst the mRNA candidates elevated in the PDX and tumour vs. normal were SERPINB5, FERMT1, AGR2, SLC6A14 and TOP2A. These genes have been associated with growth, proliferation, invasion and metastasis in pancreatic cancer previously. Cumulatively, this demonstrates the applicability of PDX models and transcriptomic array to identify genes associated with growth and proliferation of pancreatic cancer.


MicroRNA Profiles in Monocyte-Derived Macrophages Generated by Interleukin-27 and Human Serum: Identification of a Novel HIV-Inhibiting and Autophagy-Inducing MicroRNA.

  • Tomozumi Imamichi‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Interleukin-27 (IL-27) is a pleiotropic cytokine that influences the innate and adaptive immune systems. It inhibits viral infection and regulates the expression of microRNAs (miRNAs). We recently reported that macrophages differentiated from human primary monocytes in the presence of IL-27 and human AB serum resisted human immunodeficiency virus (HIV) infection and showed significant autophagy induction. In the current study, the miRNA profiles in these cells were investigated, especially focusing on the identification of novel miRNAs regulated by IL-27-treatment. The miRNA sequencing analysis detected 38 novel miRNAs. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed that IL-27 differentially regulated the expression of 16 of the 38 miRNAs. Overexpression of the synthesized miRNA mimics by transfection revealed that miRAB40 had potent HIV-inhibiting and autophagy-inducing properties. B18R, an interferon (IFN)-neutralization protein, partially suppressed both activities, indicating that the two functions were induced via IFN-dependent and -independent pathways. Although the target mRNA(s) of miRAB40 involving in the induction of both functions was unable to identify in this study, the discovery of miRAB40, a potential HIV-inhibiting and autophagy inducing miRNA, may provide novel insights into the miRNA (small none-coding RNA)-mediated regulation of HIV inhibition and autophagy induction as an innate immune response.


gp120 Envelope Glycoproteins of HIV-1 Group M Subtype A and Subtype B Differentially Affect Gene Expression in Human Vascular Endothelial Cells.

  • Andrew J Suh‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Cardiovascular complications are seen among human immunodeficiency virus (HIV)-positive individuals, who now survive longer due to successful antiretroviral therapies. Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased blood pressure in the lung circulation. The prevalence of PAH in the HIV-positive population is dramatically higher than that in the general population. While HIV-1 Group M Subtype B is the most prevalent subtype in western countries, the majority of HIV-1 infections in eastern Africa and former Soviet Union countries are caused by Subtype A. Research on vascular complications in the HIV-positive population in the context of subtype differences, however, has not been rigorous. Much of the research on HIV has focused on Subtype B, and information on the mechanisms of Subtype A is nonexistent. The lack of such knowledge results in health disparities in the development of therapeutic strategies to prevent/treat HIV complications. The present study examined the effects of HIV-1 gp120 of Subtypes A and B on human pulmonary artery endothelial cells by performing protein arrays. We found that the gene expression changes caused by gp120s of Subtypes A and B are different. Subtype A is a more potent downregulator of perostasin, matrix metalloproteinase-2, and ErbB than Subtype B, while Subtype B is more effective in downregulating monocyte chemotactic protein-2 (MCP-2), MCP-3, and thymus- and activation-regulated chemokine proteins. This is the first report of gp120 proteins affecting host cells in an HIV subtype-specific manner, opening up the possibility that complications occur differently in HIV patients throughout the world.


The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention.

  • María Eugenia González‎
  • International journal of molecular sciences‎
  • 2017‎

The human immunodeficiency virus type 1 (HIV-1) Vpr protein is an attractive target for antiretroviral drug development. The conservation both of the structure along virus evolution and the amino acid sequence in viral isolates from patients underlines the importance of Vpr for the establishment and progression of HIV-1 disease. While its contribution to virus replication in dividing and non-dividing cells and to the pathogenesis of HIV-1 in many different cell types, both extracellular and intracellular forms, have been extensively studied, its precise mechanism of action nevertheless remains enigmatic. The present review discusses how the apparently multifaceted interplay between Vpr and host cells may be due to the impairment of basic metabolic pathways. Vpr protein modifies host cell energy metabolism, oxidative status, and proteasome function, all of which are likely conditioned by the concentration and multimerization of the protein. The characterization of Vpr domains along with new laboratory tools for the assessment of their function has become increasingly relevant in recent years. With these advances, it is conceivable that drug discovery efforts involving Vpr-targeted antiretrovirals will experience substantial growth in the coming years.


Identification of Molecular Mechanisms Involved in Viral Infection Progression Based on Text Mining: Case Study for HIV Infection.

  • Olga Tarasova‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Viruses cause various infections that may affect human lifestyle for durations ranging from several days to for many years. Although preventative and therapeutic remedies are available for many viruses, they may still have a profound impact on human life. The human immunodeficiency virus type 1 is the most common cause of HIV infection, which represents one of the most dangerous and complex diseases since it affects the immune system and causes its disruption, leading to secondary complications and negatively influencing health-related quality of life. While highly active antiretroviral therapy may decrease the viral load and the velocity of HIV infection progression, some individual peculiarities may affect viral load control or the progression of T-cell malfunction induced by HIV. Our study is aimed at the text-based identification of molecular mechanisms that may be involved in viral infection progression, using HIV as a case study. Specifically, we identified human proteins and genes which commonly occurred, overexpressed or underexpressed, in the collections of publications relevant to (i) HIV infection progression and (ii) acute and chronic stages of HIV infection. Then, we considered biological processes that are controlled by the identified protein and genes. We verified the impact of the identified molecules in the associated clinical study.


Impact of HIV Infection and Anti-Retroviral Therapy on the Immune Profile of and Microbial Translocation in HIV-Infected Children in Vietnam.

  • Xiuqiong Bi‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

CD4⁺ T-lymphocyte destruction, microbial translocation, and systemic immune activation are the main mechanisms of the pathogenesis of human immunodeficiency virus type 1 (HIV) infection. To investigate the impact of HIV infection and antiretroviral therapy (ART) on the immune profile of and microbial translocation in HIV-infected children, 60 HIV vertically infected children (31 without ART: HIV(+) and 29 with ART: ART(+)) and 20 HIV-uninfected children (HIV(-)) aged 2-12 years were recruited in Vietnam, and their blood samples were immunologically and bacteriologically analyzed. Among the HIV(+) children, the total CD4⁺-cell and their subset (type 1 helper T-cell (Th1)/Th2/Th17) counts were inversely correlated with age (all p < 0.05), whereas regulatory T-cell (Treg) counts and CD4/CD8 ratios had become lower, and the CD38⁺HLA (human leukocyte antigen)-DR⁺CD8⁺- (activated CD8⁺) cell percentage and plasma soluble CD14 (sCD14, a monocyte activation marker) levels had become higher than those of HIV(-) children by the age of 2 years; the CD4/CD8 ratio was inversely correlated with the plasma HIV RNA load and CD8⁺-cell activation status. Among the ART(+) children, the total CD4⁺-cell and Th2/Th17/Treg-subset counts and the CD4/CD8 ratio gradually increased, with estimated ART periods of normalization being 4.8-8.3 years, whereas Th1 counts and the CD8⁺-cell activation status normalized within 1 year of ART initiation. sCD14 levels remained high even after ART initiation. The detection frequency of bacterial 16S/23S ribosomal DNA/RNA in blood did not differ between HIV-infected and -uninfected children. Thus, in children, HIV infection caused a rapid decrease in Treg counts and the early activation of CD8⁺ cells and monocytes, and ART induced rapid Th1 recovery and early CD8⁺-cell activation normalization but had little effect on monocyte activation. The CD4/CD8 ratio could therefore be an additional marker for ART monitoring.


Post-Translational Protein Deimination Signatures in Serum and Serum-Extracellular Vesicles of Bos taurus Reveal Immune, Anti-Pathogenic, Anti-Viral, Metabolic and Cancer-Related Pathways for Deimination.

  • Michael F Criscitiello‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70-500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein-protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein-Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.


The Interactions between the Antimicrobial Peptide P-113 and Living Candida albicans Cells Shed Light on Mechanisms of Antifungal Activity and Resistance.

  • Kuang-Ting Cheng‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

In the absence of proper immunity, such as in the case of acquired immune deficiency syndrome (AIDS) patients, Candida albicans, the most common human fungal pathogen, may cause mucosal and even life-threatening systemic infections. P-113 (AKRHHGYKRKFH), an antimicrobial peptide (AMP) derived from the human salivary protein histatin 5, shows good safety and efficacy profiles in gingivitis and human immunodeficiency virus (HIV) patients with oral candidiasis. However, little is known about how P-113 interacts with Candida albicans or its degradation by Candida-secreted proteases that contribute to the fungi's resistance. Here, we use solution nuclear magnetic resonance (NMR) methods to elucidate the molecular mechanism of interactions between P-113 and living Candida albicans cells. Furthermore, we found that proteolytic cleavage of the C-terminus prevents the entry of P-113 into cells and that increasing the hydrophobicity of the peptide can significantly increase its antifungal activity. These results could help in the design of novel antimicrobial peptides that have enhanced stability in vivo and that can have potential therapeutic applications.


Optimized Conjugation of Fluvastatin to HIV-1 TAT Displays Enhanced Pro-Apoptotic Activity in HepG2 Cells.

  • Lamya H Al-Wahaibi‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Accumulating evidence indicates that statins reduce the risk of different cancers and inhibit the proliferation of liver cancer cells. This study aims to explore whether the electrostatic conjugation of optimized fluvastatin (FLV) to human immunodeficiency virus type 1 (HIV-1) trans-activator transcription peptide (TAT) would enhance the anti-proliferative activity against HepG2 cells. FLV-TAT conjugation was optimized to achieve the lowest size with highest zeta potential. Nine formulae were constructed, using a factorial design with three factors-FLV concentration, TAT concentration, and pH of the medium-while the responses were zeta potential and size. The optimized formula showed a particle size of 199.24 nm and 29.14 mV zeta potential. Data indicates that conjugation of FLV to TAT (optimized formula) significantly enhances anti-proliferative activity and uptake by HepG2 cells when compared to raw FLV. Flow cytometry showed significant accumulation of cells in the pre-G phase, which highlights higher apoptotic activity. Annexin V staining indicated a significant increase in total cell death in early and late apoptosis. This was confirmed by significantly elevated caspase 3 in cells exposed to FLV-TAT preparation. In conclusion, the FLV-TAT optimized formula exhibited improved anti-proliferative action against HepG2. This is partially attributed to the enhanced apoptotic effects and cellular uptake of FLV.


HIV gp120 Protein Increases the Function of Connexin 43 Hemichannels and Pannexin-1 Channels in Astrocytes: Repercussions on Astroglial Function.

  • Rosario Gajardo-Gómez‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1β/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.


Unraveling the Role of Scutellaria baicalensis for the Treatment of Breast Cancer Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation.

  • Yanqi Jiao‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Scutellaria baicalensis is often used to treat breast cancer, but the molecular mechanism behind the action is unclear. In this study, network pharmacology, molecular docking, and molecular dynamics simulation are combined to reveal the most active compound in Scutellaria baicalensis and to explore the interaction between the compound molecule and the target protein in the treatment of breast cancer. In total, 25 active compounds and 91 targets were screened out, mainly enriched in lipids in atherosclerosis, the AGE-RAGE signal pathway of diabetes complications, human cytomegalovirus infection, Kaposi-sarcoma-associated herpesvirus infection, the IL-17 signaling pathway, small-cell lung cancer, measles, proteoglycans in cancer, human immunodeficiency virus 1 infection, and hepatitis B. Molecular docking shows that the two most active compounds, i.e., stigmasterol and coptisine, could bind well to the target AKT1. According to the MD simulations, the coptisine-AKT1 complex shows higher conformational stability and lower interaction energy than the stigmasterol-AKT1 complex. On the one hand, our study demonstrates that Scutellaria baicalensis has the characteristics of multicomponent and multitarget synergistic effects in the treatment of breast cancer. On the other hand, we suggest that the best effective compound is coptisine targeting AKT1, which can provide a theoretical basis for the further study of the drug-like active compounds and offer molecular mechanisms behind their roles in the treatment of breast cancer.


Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue.

  • Rafael Franco‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Angiotensin-converting enzyme 2 (ACE2) is a membrane peptidase and a component of the renin-angiotensin system (RAS) that has been found in cells of all organs, including the lungs. While ACE2 has been identified as the receptor for severe acute respiratory syndrome (SARS) coronaviruses, the mechanism underlying cell entry remains unknown. Human immunodeficiency virus infects target cells via CXC chemokine receptor 4 (CXCR4)-mediated endocytosis. Furthermore, CXCR4 interacts with dipeptidyl peptidase-4 (CD26/DPPIV), an enzyme that cleaves CXCL12/SDF-1, which is the chemokine that activates this receptor. By analogy, we hypothesized that ACE2 might also be capable of interactions with RAS-associated G-protein coupled receptors. Using resonance energy transfer and cAMP and mitogen-activated protein kinase signaling assays, we found that human ACE2 interacts with RAS-related receptors, namely the angiotensin II type 1 receptor (AT1R), the angiotensin II type 2 receptor (AT2R), and the MAS1 oncogene receptor (MasR). Although these interactions lead to minor alterations of signal transduction, ligand binding to AT1R and AT2R, but not to MasR, resulted in the upregulation of ACE2 cell surface expression. Proximity ligation assays performed in situ revealed macromolecular complexes containing ACE2 and AT1R, AT2R or MasR in adult but not fetal mouse lung tissue. These findings highlight the relevance of RAS in SARS-CoV-2 infection and the role of ACE2-containing complexes as potential therapeutic targets.


Preliminary Evidence for a Relationship between Elevated Plasma TNFα and Smaller Subcortical White Matter Volume in HCV Infection Irrespective of HIV or AUD Comorbidity.

  • Natalie M Zahr‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Classical inflammation in response to bacterial, parasitic, or viral infections such as HIV includes local recruitment of neutrophils and macrophages and the production of proinflammatory cytokines and chemokines. Proposed biomarkers of organ integrity in Alcohol Use Disorders (AUD) include elevations in peripheral plasma levels of proinflammatory proteins. In testing this proposal, previous work included a group of human immunodeficiency virus (HIV)-infected individuals as positive controls and identified elevations in the soluble proteins TNFα and IP10; these cytokines were only elevated in AUD individuals seropositive for hepatitis C infection (HCV). The current observational, cross-sectional study evaluated whether higher levels of these proinflammatory cytokines would be associated with compromised brain integrity. Soluble protein levels were quantified in 86 healthy controls, 132 individuals with AUD, 54 individuals seropositive for HIV, and 49 individuals with AUD and HIV. Among the patient groups, HCV was present in 24 of the individuals with AUD, 13 individuals with HIV, and 20 of the individuals in the comorbid AUD and HIV group. Soluble protein levels were correlated to regional brain volumes as quantified with structural magnetic resonance imaging (MRI). In addition to higher levels of TNFα and IP10 in the 2 HIV groups and the HCV-seropositive AUD group, this study identified lower levels of IL1β in the 3 patient groups relative to the control group. Only TNFα, however, showed a relationship with brain integrity: in HCV or HIV infection, higher peripheral levels of TNFα correlated with smaller subcortical white matter volume. These preliminary results highlight the privileged status of TNFα on brain integrity in the context of infection.


Chronic Exposure to HIV-Derived Protein Tat Impairs Endothelial Function via Indirect Alteration in Fat Mass and Nox1-Mediated Mechanisms in Mice.

  • Laszlo Kovacs‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

People living with human immunodeficiency virus (HIV) (PLWH) have increased risk for atherosclerosis-related cardiovascular disease (CVD), the main cause of death in this population. Notwithstanding, the mechanisms of HIV-associated vascular pathogenesis are not fully elucidated. Therefore, we sought to determine whether HIV-regulatory protein Tat mediates HIV-induced endothelial dysfunction via NADPH oxidase 1 (Nox1)-dependent mechanisms. Body weight, fat mass, leptin levels, expression of reactive oxygen species (ROS)-producing enzymes and vascular function were assessed in C57BL/6 male mice treated with Tat for 3 days and 4 weeks. Aortic rings and human endothelial cells were also treated with Tat for 2-24 h in ex vivo and in vitro settings. Chronic (4 weeks) but not acute (3 days and 2-24 h) treatment with Tat decreased body weight, fat mass, and leptin levels and increased the expression of Nox1 and its coactivator NADPH oxidase Activator 1 (NoxA1). This was associated with impaired endothelium-dependent vasorelaxation. Importantly, specific inhibition of Nox1 with GKT771 and chronic leptin infusion restored endothelial function in Tat-treated mice. These data rule out direct effects of HIV-Tat on endothelial function and imply the contribution of reductions in adipose mass and leptin production which likely explain upregulated expression of Nox1 and NoxA1. The Nox1 and leptin system may provide potential targets to improve vascular function in HIV infection-associated CVD.


Pharmacophore-Oriented Identification of Potential Leads as CCR5 Inhibitors to Block HIV Cellular Entry.

  • Pooja Singh‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Cysteine-cysteine chemokine receptor 5 (CCR5) has been discovered as a co-receptor for cellular entry of human immunodeficiency virus (HIV). Moreover, the role of CCR5 in a variety of cancers and various inflammatory responses was also discovered. Despite the fact that several CCR5 antagonists have been investigated in clinical trials, only Maraviroc has been licensed for use in the treatment of HIV patients. This indicates that there is a need for novel CCR5 antagonists. Keeping this in mind, the present study was designed. The active CCR5 inhibitors with known IC50 value were selected from the literature and utilized to develop a ligand-based common feature pharmacophore model. The validated pharmacophore model was further used for virtual screening of drug-like databases obtained from the Asinex, Specs, InterBioScreen, and Eximed chemical libraries. Utilizing computational methods such as molecular docking studies, molecular dynamics simulations, and binding free energy calculation, the binding mechanism of selected inhibitors was established. The identified Hits not only showed better binding energy when compared to Maraviroc, but also formed stable interactions with the key residues and showed stable behavior throughout the 100 ns MD simulation. Our findings suggest that Hit1 and Hit2 may be potential candidates for CCR5 inhibition, and, therefore, can be considered for further CCR5 inhibition programs.


High-Throughput NanoBiT-Based Screening for Inhibitors of HIV-1 Vpu and Host BST-2 Protein Interaction.

  • Boye Li‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Bone marrow stromal cell antigen 2 (BST-2), also known as CD317 or tetherin, has been identified as a host restriction factor that suppresses the release of enveloped viruses from host cells by physically tethering viral particles to the cell surface; however, this host defense can be subverted by multiple viruses. For example, human immunodeficiency virus (HIV)-1 encodes a specific accessory protein, viral protein U (Vpu), to counteract BST-2 by binding to it and directing its lysosomal degradation. Thus, blocking the interaction between Vpu and BST-2 will provide a promising strategy for anti-HIV therapy. Here, we report a NanoLuc Binary Technology (NanoBiT)-based high-throughput screening assay to detect inhibitors that disrupt the Vpu-BST-2 interaction. Out of more than 1000 compounds screened, four inhibitors were identified with strong activity at nontoxic concentrations. In subsequent cell-based BST-2 degradation assays, inhibitor Y-39983 HCl restored the cell-surface and total cellular level of BST-2 in the presence of Vpu. Furthermore, the Vpu-mediated enhancement of pesudotyped viral particle production was inhibited by Y-39983 HCl. Our findings indicate that our newly developed assay can be used for the discovery of potential antiviral molecules with novel mechanisms of action.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: