Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 486 papers

Computational analysis of genes with lethal knockout phenotype and prediction of essential genes in archaea.

  • Kira S Makarova‎ et al.
  • mBio‎
  • 2024‎

The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.


Mycobacterial SigA and SigB Cotranscribe Essential Housekeeping Genes during Exponential Growth.

  • Kelley Hurst-Hess‎ et al.
  • mBio‎
  • 2019‎

Mycobacterial σB belongs to the group II family of sigma factors, which are widely considered to transcribe genes required for stationary-phase survival and the response to stress. Here we explored the mechanism underlying the observed hypersensitivity of ΔsigB deletion mutants of Mycobacteriumsmegmatis, M. abscessus, and M. tuberculosis to rifampin (RIF) and uncovered an additional constitutive role of σB during exponential growth of mycobacteria that complements the function of the primary sigma factor, σA Using chromatin immunoprecipitation sequencing (ChIP-Seq), we show that during exponential phase, σB binds to over 200 promoter regions, including those driving expression of essential housekeeping genes, like the rRNA gene. ChIP-Seq of ectopically expressed σA-FLAG demonstrated that at least 61 promoter sites are recognized by both σA and σB These results together suggest that RNA polymerase holoenzymes containing either σA or σB transcribe housekeeping genes in exponentially growing mycobacteria. The RIF sensitivity of the ΔsigB mutant possibly reflects a decrease in the effective housekeeping holoenzyme pool, which results in susceptibility of the mutant to lower doses of RIF. Consistent with this model, overexpression of σA restores the RIF tolerance of the ΔsigB mutant to that of the wild type, concomitantly ruling out a specialized role of σB in RIF tolerance. Although the properties of mycobacterial σB parallel those of Escherichiacoli σ38 in its ability to transcribe a subset of housekeeping genes, σB presents a clear departure from the E. coli paradigm, wherein the cellular levels of σ38 are tightly controlled during exponential growth, such that the transcription of housekeeping genes is initiated exclusively by a holoenzyme containing σ70 (E.σ70).IMPORTANCE All mycobacteria encode a group II sigma factor, σB, closely related to the group I principal housekeeping sigma factor, σA Group II sigma factors are widely believed to play specialized roles in the general stress response and stationary-phase transition in the bacteria that encode them. Contrary to this widely accepted view, we show an additional housekeeping function of σB that complements the function of σA in logarithmically growing cells. These findings implicate a novel and dynamic partnership between σA and σB in maintaining the expression of housekeeping genes in mycobacteria and can perhaps be extended to other bacterial species that possess multiple group II sigma factors.


A CRISPRi-based genetic resource to study essential Staphylococcus aureus genes.

  • Patricia Reed‎ et al.
  • mBio‎
  • 2024‎

Staphylococcus aureus is an important clinical pathogen that causes a high number of antibiotic-resistant infections. The study of S. aureus biology, and particularly of the function of essential proteins, is of particular importance to develop new approaches to combat this pathogen. We have optimized a clustered regularly interspaced short palindromic repeat interference (CRISPRi) system that allows efficient targeting of essential S. aureus genes. Furthermore, we have used that system to construct a library comprising 261 strains, which allows the depletion of essential proteins encoded by 200 genes/operons. This library, which we have named Lisbon CRISPRi Mutant Library, should facilitate the study of S. aureus pathogenesis and biology.


Morphological and Transcriptional Responses to CRISPRi Knockdown of Essential Genes in Escherichia coli.

  • Melanie R Silvis‎ et al.
  • mBio‎
  • 2021‎

CRISPR interference (CRISPRi) has facilitated the study of essential genes in diverse organisms using both high-throughput and targeted approaches. Despite the promise of this technique, no comprehensive arrayed CRISPRi library targeting essential genes exists for the model bacterium Escherichia coli, or for any Gram-negative species. Here, we built and characterized such a library. Each of the ∼500 strains in our E. coli library contains an inducible, chromosomally integrated single guide RNA (sgRNA) targeting an essential (or selected nonessential) gene and can be mated with a pseudo-Hfr donor strain carrying a dcas9 cassette to create a CRISPRi knockdown strain. Using this system, we built an arrayed library of CRISPRi strains and performed population and single-cell growth and morphology measurements as well as targeted follow-up experiments. These studies found that inhibiting translation causes an extended lag phase, identified new modulators of cell morphology, and revealed that the morphogene mreB is subject to transcriptional feedback regulation, which is critical for the maintenance of morphology. Our findings highlight canonical and noncanonical roles for essential genes in numerous aspects of cellular homeostasis. IMPORTANCE Essential genes make up only ∼5 to 10% of the genetic complement in most organisms but occupy much of their protein synthesis and account for almost all antibiotic targets. Despite the importance of essential genes, their intractability has, until recently, hampered efforts to study them. CRISPRi has facilitated the study of essential genes by allowing inducible and titratable depletion. However, all large-scale CRISPRi studies in Gram-negative bacteria thus far have used plasmids to express CRISPRi components and have been constructed in pools, limiting their utility for targeted assays and complicating the determination of antibiotic effects. Here, we use a modular method to construct an arrayed library of chromosomally integrated CRISPRi strains targeting the essential genes of the model bacterium Escherichia coli. This library enables targeted studies of essential gene depletions and high-throughput determination of antibiotic targets and facilitates studies targeting the outer membrane, an essential component that serves as the major barrier to antibiotics.


SuhB is a regulator of multiple virulence genes and essential for pathogenesis of Pseudomonas aeruginosa.

  • Kewei Li‎ et al.
  • mBio‎
  • 2013‎

During initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis. Pseudomonas aeruginosa has evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The type III secretion system (T3SS) and motility are associated with acute infections, while biofilm formation and the type VI secretion system (T6SS) are associated with chronic persistence. To identify novel regulatory genes required for pathogenesis, we screened a P. aeruginosa transposon (Tn) insertion library and found suhB to be an essential gene for the T3SS gene expression. The expression of suhB was upregulated in a mouse acute lung infection model, and loss of suhB resulted in avirulence. Suppression of T3SS gene expression in the suhB mutant is linked to a defective translation of the T3SS master regulator, ExsA. Further studies demonstrated that suhB mutation led to the upregulation of GacA and its downstream small RNAs, RsmY and RsmZ, triggering T6SS expression and biofilm formation while inhibiting the T3SS. Our results demonstrate that an in vivo-inducible gene, suhB, reciprocally regulates genes associated with acute and chronic infections and plays an essential role in the pathogenesis of P. aeruginosa.


Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development.

  • Madeleine G Moule‎ et al.
  • mBio‎
  • 2014‎

Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 10(6) transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH, accA, and sodB, and a gene predicted to be nonessential, bpss0370, were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied.


Release of nonstop ribosomes is essential.

  • Heather A Feaga‎ et al.
  • mBio‎
  • 2014‎

Bacterial ribosomes frequently translate to the 3' end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans-translation pathway to release these "nonstop" ribosomes and maintain protein synthesis capacity. trans-translation is essential in some species, but in others, such as Caulobacter crescentus, trans-translation can be inactivated. To determine why trans-translation is dispensable in C. crescentus, a Tn-seq screen was used to identify genes that specifically alter growth in cells lacking ssrA, the gene encoding tmRNA. One of these genes, CC1214, was essential in ΔssrA cells. Purified CC1214 protein could release nonstop ribosomes in vitro. CC1214 is a homolog of the Escherichia coli ArfB protein, and using the CC1214 sequence, ArfB homologs were identified in the majority of bacterial phyla. Most species in which ssrA has been deleted contain an ArfB homolog, suggesting that release of nonstop ribosomes may be essential in most or all bacteria.


The Essential Genome of Escherichia coli K-12.

  • Emily C A Goodall‎ et al.
  • mBio‎
  • 2018‎

Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry.IMPORTANCE Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data.


Protein domains of unknown function are essential in bacteria.

  • Norman F Goodacre‎ et al.
  • mBio‎
  • 2013‎

More than 20% of all protein domains are currently annotated as "domains of unknown function" (DUFs). About 2,700 DUFs are found in bacteria compared with just over 1,500 in eukaryotes. Over 800 DUFs are shared between bacteria and eukaryotes, and about 300 of these are also present in archaea. A total of 2,786 bacterial Pfam domains even occur in animals, including 320 DUFs. Evolutionary conservation suggests that many of these DUFs are important. Here we show that 355 essential proteins in 16 model bacterial species contain 238 DUFs, most of which represent single-domain proteins, clearly establishing the biological essentiality of DUFs. We suggest that experimental research should focus on conserved and essential DUFs (eDUFs) for functional analysis given their important function and wide taxonomic distribution, including bacterial pathogens.


Respiration is essential for aerobic growth of Zymomonas mobilis ZM4.

  • Magdalena M Felczak‎ et al.
  • mBio‎
  • 2023‎

Zymomonas mobilis is an alpha-proteobacterium that is a promising platform for industrial scale production of biofuels due to its efficient ethanol fermentation and low biomass generation. Z. mobilis is aerotolerant and encodes a complete respiratory electron transport chain, but the benefit of respiration for growth in oxic conditions has never been confirmed, despite decades of research. Growth and ethanol production of wild-type Z. mobilis is poor in oxic conditions indicating that it does not benefit from oxidative phosphorylation. Additionally, in previous studies, aerobic growth improved significantly when respiratory genes were disrupted (ndh) or acquired point mutations (cydA and cydB), even if respiration was significantly reduced by these changes. Here, we obtained clean deletions of respiratory genes ndh and cydAB, individually and in combination, and showed, for the first time, that deletion of cydAB completely inhibited O2 respiration and dramatically reduced growth in oxic conditions. Both respiration and aerobic growth were restored by expressing a heterologous, water-forming NADH oxidase, noxE. Oxygen can have many negative effects, including formation of reactive oxygen species (ROS) or directly inactivating oxygen sensitive enzymes. Our results suggest that the effect of molecular oxygen on enzymes had a greater negative impact on Z. mobilis than formation of ROS. This result shows that the main role of the electron transport chain in Z. mobilis is reducing the intracellular concentration of molecular oxygen, helping to explain why it is beneficial for Z. mobilis to use electron transport chain complexes that have little capacity to contribute to oxidative phosphorylation. IMPORTANCE A key to producing next-generation biofuels is to engineer microbes that efficiently convert non-food materials into drop-in fuels, and to engineer microbes effectively, we must understand their metabolism thoroughly. Zymomonas mobilis is a bacterium that is a promising candidate biofuel producer, but its metabolism remains poorly understood, especially its metabolism when exposed to oxygen. Although Z. mobilis respires with oxygen, its aerobic growth is poor, and disruption of genes related to respiration counterintuitively improves aerobic growth. This unusual result has sparked decades of research and debate regarding the function of respiration in Z. mobilis. Here, we used a new set of mutants to determine that respiration is essential for aerobic growth and likely protects the cells from damage caused by oxygen. We conclude that the respiratory pathway of Z. mobilis should not be deleted from chassis strains for industrial production because this would yield a strain that is intolerant of oxygen, which is more difficult to manage in industrial settings.


An Anaplasma phagocytophilum T4SS effector, AteA, is essential for tick infection.

  • Jason M Park‎ et al.
  • mBio‎
  • 2023‎

Ticks are the number one vector of pathogens for livestock worldwide and for humans in the United States. The biology of tick transmission is an understudied area. Understanding this critical interaction could provide opportunities to affect the course of disease spread. In this study, we examined the zoonotic tick-borne agent Anaplasma phagocytophilum and identified a secreted protein, AteA, which is expressed in a tick-specific manner. These secreted proteins, termed effectors, are the first proteins to interact with the host environment. AteA is essential for survival in ticks and appears to interact with cortical actin. Most effector proteins are studied in the context of the mammalian host; however, understanding how this unique set of proteins affects tick transmission is critical to developing interventions.


AtrR Is an Essential Determinant of Azole Resistance in Aspergillus fumigatus.

  • Sanjoy Paul‎ et al.
  • mBio‎
  • 2019‎

Aspergillosis associated with azole-resistant Aspergillus fumigatus has a mortality rate that can approach 90% in certain patient populations. The best-understood avenue for azole resistance involves changes in the cyp51A gene that encodes the target of azole drugs, lanosterol α-14 demethylase. The most common azole resistance allele currently described is a linked change corresponding to a change in the coding sequence of cyp51A and a duplication of a 34-bp region in the promoter leading to a tandem repeat (TR). Our previous studies identified a positively acting transcription factor called AtrR that binds to the promoter of cyp51A as well as that of an important membrane transporter protein gene called abcG1 In this work, we characterize two different mutant alleles of atrR, either an overproducing or an epitope-tagged form, causing constitutive activation of this factor. Using an epitope-tagged allele of atrR for chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq), the genomic binding sites for AtrR were determined. Close to 900 genes were found to have an AtrR response element (ATRE) in their promoter regions. Transcriptome evaluation by RNA sequencing (RNA-seq) indicated that both alleles led to elevated transcription of a subset of target genes. An electrophoretic mobility shift assay and DNase I protection mapping localized the ATREs in both the abcG1 and cyp51A promoters. The ATRE in cyp51A was located within the 34-bp repeat element. Virulence in a murine model was compromised when AtrR was either deleted or overproduced, indicating that the proper dosage of this factor is key for pathogenesis.IMPORTANCEAspergillus fumigatus is the major filamentous fungal pathogen in humans. Infections associated with A. fumigatus are often treated with azole drugs, but resistance to these antifungal agents is increasing. Mortality from aspergillosis associated with azole-resistant fungi is extremely high. Previous work has identified transcriptional control of the azole drug target-encoding gene cyp51A as an important contributor to resistance in A. fumigatus Here, we demonstrate that the transcription factor AtrR binds to a region in the cyp51A promoter that is associated with alleles of this gene conferring clinically important azole resistance. Using high-throughput genomic technologies, we also uncover a large suite of target genes controlled by AtrR. These data indicate that AtrR coordinately regulates many different processes involved in drug resistance, metabolism, and virulence. Our new understanding of AtrR function provides important new insight into the pathogenesis of A. fumigatus.


Essential gene knockdowns reveal genetic vulnerabilities and antibiotic sensitivities in Acinetobacter baumannii.

  • Ryan D Ward‎ et al.
  • mBio‎
  • 2024‎

The emergence of multidrug-resistant Gram-negative bacteria underscores the need to define genetic vulnerabilities that can be therapeutically exploited. The Gram-negative pathogen, Acinetobacter baumannii, is considered an urgent threat due to its propensity to evade antibiotic treatments. Essential cellular processes are the target of existing antibiotics and a likely source of new vulnerabilities. Although A. baumannii essential genes have been identified by transposon sequencing, they have not been prioritized by sensitivity to knockdown or antibiotics. Here, we take a systems biology approach to comprehensively characterize A. baumannii essential genes using CRISPR interference (CRISPRi). We show that certain essential genes and pathways are acutely sensitive to knockdown, providing a set of vulnerable targets for future therapeutic investigation. Screening our CRISPRi library against last-resort antibiotics uncovered genes and pathways that modulate beta-lactam sensitivity, an unexpected link between NADH dehydrogenase activity and growth inhibition by polymyxins, and anticorrelated phenotypes that may explain synergy between polymyxins and rifamycins. Our study demonstrates the power of systematic genetic approaches to identify vulnerabilities in Gram-negative pathogens and uncovers antibiotic-essential gene interactions that better inform combination therapies.IMPORTANCEAcinetobacter baumannii is a hospital-acquired pathogen that is resistant to many common antibiotic treatments. To combat resistant A. baumannii infections, we need to identify promising therapeutic targets and effective antibiotic combinations. In this study, we comprehensively characterize the genes and pathways that are critical for A. baumannii viability. We show that genes involved in aerobic metabolism are central to A. baumannii physiology and may represent appealing drug targets. We also find antibiotic-gene interactions that may impact the efficacy of carbapenems, rifamycins, and polymyxins, providing a new window into how these antibiotics function in mono- and combination therapies. Our studies offer a useful approach for characterizing interactions between drugs and essential genes in pathogens to inform future therapies.


Endoribonuclease YbeY Is Essential for RNA Processing and Virulence in Pseudomonas aeruginosa.

  • Yushan Xia‎ et al.
  • mBio‎
  • 2020‎

Posttranscriptional regulation plays an essential role in the quick adaptation of pathogenic bacteria to host environments, and RNases play key roles in this process by modifying small RNAs and mRNAs. We find that the Pseudomonas aeruginosa endonuclease YbeY is required for rRNA processing and the bacterial virulence in a murine acute pneumonia model. Transcriptomic analyses reveal that knocking out the ybeY gene results in downregulation of oxidative stress response genes, including the catalase genes katA and katB Consistently, the ybeY mutant is more susceptible to H2O2 and neutrophil-mediated killing. Overexpression of katA restores the bacterial tolerance to H2O2 and neutrophil killing as well as virulence. We further find that the downregulation of the oxidative stress response genes is due to defective expression of the stationary-phase sigma factor RpoS. We demonstrate an autoregulatory mechanism of RpoS and find that ybeY mutation increases the level of a small RNA, ReaL, which directly represses the translation of rpoS through the 5' UTR of its mRNA and subsequently reduces the expression of the oxidative stress response genes. In vitro assays demonstrate direct degradation of ReaL by YbeY. Deletion of reaL or overexpression of rpoS in the ybeY mutant restores the bacterial tolerance to oxidative stress and the virulence. We also demonstrate that YbeZ binds to YbeY and is involved in the 16S rRNA processing and regulation of reaL and rpoS as well as the bacterial virulence. Overall, our results reveal pleiotropic roles of YbeY and the YbeY-mediated regulation of rpoS through ReaL.IMPORTANCE The increasing bacterial antibiotic resistance imposes a severe threat to human health. For the development of effective treatment and prevention strategies, it is critical to understand the mechanisms employed by bacteria to grow in the human body. Posttranscriptional regulation plays an important role in bacterial adaptation to environmental changes. RNases and small RNAs are key players in this regulation. In this study, we demonstrate critical roles of the RNase YbeY in the virulence of the pathogenic bacterium Pseudomonas aeruginosa We further identify the small RNA ReaL as the direct target of YbeY and elucidate the YbeY-regulated pathway on the expression of bacterial virulence factors. Our results shed light on the complex regulatory network of P. aeruginosa and indicate that inference with the YbeY-mediated regulatory pathway might be a valid strategy for the development of a novel treatment strategy.


An Evolutionarily Conserved Pathway Essential for Orsay Virus Infection of Caenorhabditis elegans.

  • Hongbing Jiang‎ et al.
  • mBio‎
  • 2017‎

Many fundamental biological discoveries have been made in Caenorhabditis elegans The discovery of Orsay virus has enabled studies of host-virus interactions in this model organism. To identify host factors critical for Orsay virus infection, we designed a forward genetic screen that utilizes a virally induced green fluorescent protein (GFP) reporter. Following chemical mutagenesis, two Viro (virus induced reporter off) mutants that failed to express GFP were mapped to sid-3, a nonreceptor tyrosine kinase, and B0280.13 (renamed viro-2), an ortholog of human Wiskott-Aldrich syndrome protein (WASP). Both mutants yielded Orsay virus RNA levels comparable to that of the residual input virus, suggesting that they are not permissive for Orsay virus replication. In addition, we demonstrated that both genes affect an early prereplication stage of Orsay virus infection. Furthermore, it is known that the human ortholog of SID-3, activated CDC42-associated kinase (ACK1/TNK2), is capable of phosphorylating human WASP, suggesting that VIRO-2 may be a substrate for SID-3 in C. elegans A targeted RNA interference (RNAi) knockdown screen further identified the C. elegans gene nck-1, which has a human ortholog that interacts with TNK2 and WASP, as required for Orsay virus infection. Thus, genetic screening in C. elegans identified critical roles in virus infection for evolutionarily conserved genes in a known human pathway.IMPORTANCE Orsay virus is the only known virus capable of naturally infecting the model organism Caenorhabditis elegans, which shares many evolutionarily conserved genes with humans. We exploited the robust genetic tractability of C. elegans to identify three host genes, sid-3, viro-2, and nck-1, which are essential for Orsay virus infection. Mutant animals that lack these three genes are highly defective in viral replication. Strikingly, the human orthologs of these three genes, activated CDC42-associated kinase (TNK2), Wiskott-Aldrich syndrome protein (WASP), and noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) are part of a known signaling pathway in mammals. These results suggest that TNK2, WASP, and NCK1 may play important roles in mammalian virus infection.


Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli.

  • Shlomo E Blum‎ et al.
  • mBio‎
  • 2018‎

Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental ("dairy-farm" E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec-positive (fec+) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec-transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity.IMPORTANCE Bovine mastitis is the major infectious disease in dairy cows and the leading cause of economic loss to the global dairy industry, directly contributing to the price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system.


Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization.

  • Giuseppe Ianiri‎ et al.
  • mBio‎
  • 2015‎

Fungal diseases represent a major burden to health care globally. As with other pathogenic microbes, there is a limited number of agents suitable for use in treating fungal diseases, and resistance to these agents can develop rapidly. Cryptococcus neoformans is a basidiomycete fungus that causes cryptococcosis worldwide in both immunocompromised and healthy individuals. As a basidiomycete, it diverged from other common pathogenic or model ascomycete fungi more than 500 million years ago. Here, we report C. neoformans genes that are essential for viability as identified through forward and reverse genetic approaches, using an engineered diploid strain and genetic segregation after meiosis. The forward genetic approach generated random insertional mutants in the diploid strain, the induction of meiosis and sporulation, and selection for haploid cells with counterselection of the insertion event. More than 2,500 mutants were analyzed, and transfer DNA (T-DNA) insertions in several genes required for viability were identified. The genes include those encoding the thioredoxin reductase (Trr1), a ribosome assembly factor (Rsa4), an mRNA-capping component (Cet1), and others. For targeted gene replacement, the C. neoformans homologs of 35 genes required for viability in ascomycete fungi were disrupted, meiosis and sporulation were induced, and haploid progeny were evaluated for their ability to grow on selective media. Twenty-one (60%) were found to be required for viability in C. neoformans. These genes are involved in mitochondrial translation, ergosterol biosynthesis, and RNA-related functions. The heterozygous diploid mutants were evaluated for haploinsufficiency on a number of perturbing agents and drugs, revealing phenotypes due to the loss of one copy of an essential gene in C. neoformans. This study expands the knowledge of the essential genes in fungi using a basidiomycete as a model organism. Genes that have no mammalian homologs and are essential in both Cryptococcus and ascomycete human pathogens would be ideal for the development of antifungal drugs with broad-spectrum activity.


A Conditional Protein Degradation System To Study Essential Gene Function in Cryptosporidium parvum.

  • Hadi H Choudhary‎ et al.
  • mBio‎
  • 2020‎

Cryptosporidium spp., protozoan parasites, are a leading cause of global diarrhea-associated morbidity and mortality in young children and immunocompromised individuals. The limited efficacy of the only available drug and lack of vaccines make it challenging to treat and prevent cryptosporidiosis. Therefore, the identification of essential genes and understanding their biological functions are critical for the development of new therapies. Currently, there is no genetic tool available to investigate the function of essential genes in Cryptosporidium spp. Here, we describe the development of the first conditional system in Cryptosporidium parvum Our system utilizes the Escherichia coli dihydrofolate reductase degradation domain (DDD) and the stabilizing compound trimethoprim (TMP) for conditional regulation of protein levels in the parasite. We tested our system on the calcium-dependent protein kinase-1 (CDPK1), a leading drug target in C. parvum By direct knockout strategy, we establish that cdpk1 is refractory to gene deletion, indicating its essentiality for parasite survival. Using CRISPR/Cas9, we generated transgenic parasites expressing CDPK1 with an epitope tag, and localization studies indicate its expression during asexual parasite proliferation. We then genetically engineered C. parvum to express CDPK1 tagged with DDD. We demonstrate that TMP can regulate CDPK1 levels in this stable transgenic parasite line, thus revealing the critical role of this kinase in parasite proliferation. Further, these transgenic parasites show TMP-mediated regulation of CDPK1 levels in vitro and an increased sensitivity to kinase inhibitor upon conditional knockdown. Overall, this study reports the development of a powerful conditional system that can be used to study essential genes in CryptosporidiumIMPORTANCECryptosporidium parvum and Cryptosporidium hominis are leading pathogens responsible for diarrheal disease (cryptosporidiosis) and deaths in infants and children below 5 years of age. There are no effective treatment options and no vaccine for cryptosporidiosis. Therefore, there is an urgent need to identify essential gene targets and uncover their biological function to accelerate the development of new and effective anticryptosporidial drugs. Current genetic tool allows targeted disruption of gene function but leads to parasite lethality if the gene is essential for survival. In this study, we have developed a genetic tool for conditional degradation of proteins in Cryptosporidium spp., thus allowing us to study the function of essential genes. Our conditional system expands the molecular toolbox for Cryptosporidium, and it will help us to understand the biology of this important human diarrheal pathogen for the development of new drugs and vaccines.


Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition?

  • Beth M Hayes‎ et al.
  • mBio‎
  • 2014‎

The Lyme disease spirochete Borrelia burgdorferi senses and responds to environmental cues as it transits between the tick vector and vertebrate host. Failure to properly adapt can block transmission of the spirochete and persistence in either vector or host. We previously identified BBD18, a novel plasmid-encoded protein of B. burgdorferi, as a putative repressor of the host-essential factor OspC. In this study, we investigate the in vivo role of BBD18 as a regulatory protein, using an experimental mouse-tick model system that closely resembles the natural infectious cycle of B. burgdorferi. We show that spirochetes that have been engineered to constitutively produce BBD18 can colonize and persist in ticks but do not infect mice when introduced by either tick bite or needle inoculation. Conversely, spirochetes lacking BBD18 can persistently infect mice but are not acquired by feeding ticks. Through site-directed mutagenesis, we have demonstrated that abrogation of spirochete infection in mice by overexpression of BBD18 occurs only with bbd18 alleles that can suppress OspC synthesis. Finally, we demonstrate that BBD18-mediated regulation does not utilize a previously described ospC operator sequence required by B. burgdorferi for persistence in immunocompetent mice. These data lead us to conclude that BBD18 does not represent the putative repressor utilized by B. burgdorferi for the specific downregulation of OspC in the mammalian host. Rather, we suggest that BBD18 exhibits features more consistent with those of a global regulatory protein whose critical role occurs during spirochete acquisition by feeding ticks. IMPORTANCE Lyme disease, caused by Borrelia burgdorferi, is the most common arthropod-borne disease in North America. B. burgdorferi is transmitted to humans and other vertebrate hosts by ticks as they take a blood meal. Transmission between vectors and hosts requires the bacterium to sense changes in the environment and adapt. However, the mechanisms involved in this process are not well understood. By determining how B. burgdorferi cycles between two very different environments, we can potentially establish novel ways to interfere with transmission and limit infection of this vector-borne pathogen. We are studying a regulatory protein called BBD18 that we recently described. We found that too much BBD18 interferes with the spirochete's ability to establish infection in mice, whereas too little BBD18 appears to prevent colonization in ticks. Our study provides new insight into key elements of the infectious cycle of the Lyme disease spirochete.


Functional Constraints on Replacing an Essential Gene with Its Ancient and Modern Homologs.

  • Betül Kacar‎ et al.
  • mBio‎
  • 2017‎

Genes encoding proteins that carry out essential informational tasks in the cell, in particular where multiple interaction partners are involved, are less likely to be transferable to a foreign organism. Here, we investigated the constraints on transfer of a gene encoding a highly conserved informational protein, translation elongation factor Tu (EF-Tu), by systematically replacing the endogenous tufA gene in the Escherichia coli genome with its extant and ancestral homologs. The extant homologs represented tuf variants from both near and distant homologous organisms. The ancestral homologs represented phylogenetically resurrected tuf sequences dating from 0.7 to 3.6 billion years ago (bya). Our results demonstrate that all of the foreign tuf genes are transferable to the E. coli genome, provided that an additional copy of the EF-Tu gene, tufB, remains present in the E. coli genome. However, when the tufB gene was removed, only the variants obtained from the gammaproteobacterial family (extant and ancestral) supported growth which demonstrates the limited functional interchangeability of E. coli tuf with its homologs. Relative bacterial fitness correlated with the evolutionary distance of the extant tuf homologs inserted into the E. coli genome. This reduced fitness was associated with reduced levels of EF-Tu and reduced rates of protein synthesis. Increasing the expression of tuf partially ameliorated these fitness costs. In summary, our analysis suggests that the functional conservation of protein activity, the amount of protein expressed, and its network connectivity act to constrain the successful transfer of this essential gene into foreign bacteria.IMPORTANCE Horizontal gene transfer (HGT) is a fundamental driving force in bacterial evolution. However, whether essential genes can be acquired by HGT and whether they can be acquired from distant organisms are very poorly understood. By systematically replacing tuf with ancestral homologs and homologs from distantly related organisms, we investigated the constraints on HGT of a highly conserved gene with multiple interaction partners. The ancestral homologs represented phylogenetically resurrected tuf sequences dating from 0.7 to 3.6 bya. Only variants obtained from the gammaproteobacterial family (extant and ancestral) supported growth, demonstrating the limited functional interchangeability of E. coli tuf with its homologs. Our analysis suggests that the functional conservation of protein activity, the amount of protein expressed, and its network connectivity act to constrain the successful transfer of this essential gene into foreign bacteria.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: