Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 486 papers

Bacteroidetocins Target the Essential Outer Membrane Protein BamA of Bacteroidales Symbionts and Pathogens.

  • Leigh M Matano‎ et al.
  • mBio‎
  • 2021‎

Bacteroidetocins are a family of antibacterial peptide toxins that are produced by and target members of the phylum Bacteroidetes. To date, 19 bacteroidetocins have been identified, and four have been tested and shown to kill diverse Bacteroidales species (M. J. Coyne, N. Béchon, L. M. Matano, V. L. McEneany, et al., Nat Commun 10:3460, 2019, https://doi.org/10.1038/s41467-019-11494-1). Here, we identify the target and likely mechanism of action of the bacteroidetocins. We selected seven spontaneous mutants of four different genera, all resistant to bacteroidetocin A (Bd-A) and found that all contained mutations in a single gene, bamA. Construction of three of these bamA mutants in the wild-type (WT) strains confirmed they confer resistance to Bd-A as well as to other bacteroidetocins. We identified an aspartate residue of BamA at the beginning of exterior loop 3 (eL3) that, when altered, renders strains resistant to Bd-A. Analysis of a panel of diverse Bacteroidales strains showed a correlation between the presence of this aspartate residue and Bd-A sensitivity. Fluorescence microscopy and transmission electron microscopy (TEM) analysis of Bd-A-treated cells showed cellular morphological changes consistent with a BamA defect. Transcriptomic analysis of Bd-A-treated cells revealed gene expression changes indicative of cell envelope stress. Studies in mice revealed that bacteroidetocin-resistant mutants are outcompeted by their WT strain in vivo. Analyses of longitudinal human gut isolates showed that bamA mutations leading to bacteroidetocin resistance do not become fixed in the human gut, even in bacteroidetocin-producing strains and nonproducing coresident strains. Together, these data lend further support to the applicability of the bacteroidetocins as therapeutic peptides in the treatment of maladies involving Bacteroidales species. IMPORTANCE The bacteroidetocins are a newly discovered class of bacteriocins specific to Bacteroidetes with a spectrum of targets extending from symbiotic gut Bacteroides, Parabacteroides, and Prevotella species to pathogenic oral and vaginal Prevotella species. We previously showed that one such bacteroidetocin, Bd-A, is active at nanomolar concentrations, is water soluble, and is bactericidal, all desirable features in a therapeutic antibacterial peptide. Here, we identify the target of several of the bacteroidetocins as the essential outer membrane protein BamA. Although mutations in bamA can be selected in bacteria grown in vitro, we show both in a mouse model and in human gut ecosystems that bamA mutants leading to Bd-A resistance are fitness attenuated and are not selected. These features further support the potential usefulness of the bacteroidetocins as therapeutics for maladies associated with pathogenic Prevotella species, such as recurrent bacterial vaginosis, for which there are few effective treatments.


The Helicobacter pylori UvrC Nuclease Is Essential for Chromosomal Microimports after Natural Transformation.

  • Florent Ailloud‎ et al.
  • mBio‎
  • 2022‎

Helicobacter pylori is a Gram-negative bacterial carcinogenic pathogen that infects the stomachs of half of the human population. It is a natural mutator due to a deficient DNA mismatch repair pathway and is naturally competent for transformation. As a result, it is one of the most genetically diverse human bacterial pathogens. The length of chromosomal imports in H. pylori follows an unusual bimodal distribution consisting of macroimports with a mean length of 1,645 bp and microimports with a mean length of 28 bp. The mechanisms responsible for this import pattern were unknown. Here, we used a high-throughput whole-genome transformation assay to elucidate the role of nucleotide excision repair pathway (NER) components on import length distribution. The data show that the integration of microimports depended on the activity of the UvrC endonuclease, while none of the other components of the NER pathway was required. Using H. pylori site-directed mutants, we showed that the widely conserved UvrC nuclease active sites, while essential for protection from UV light, one of the canonical NER functions, are not required for generation of microimports. A quantitative analysis of recombination patterns based on over 1,000 imports from over 200 sequenced recombinant genomes showed that microimports occur frequently within clusters of multiple imports, strongly suggesting they derive from a single strand invasion event. We propose a hypothetical model of homologous recombination in H. pylori, involving a novel function of UvrC, that reconciles the available experimental data about recombination patterns in H. pylori. IMPORTANCE Helicobacter pylori is one of the most common and genetically diverse human bacterial pathogens. It is responsible for chronic gastritis and represents the main risk factor for gastric cancer. In H. pylori, DNA fragments can be imported by recombination during natural transformation. The length of those fragments determines how many potentially beneficial or deleterious alleles are acquired and thus influences adaptation to the gastric niche. Here, we used a transformation assay to examine imported fragments across the chromosome. We show that UvrC, an endonuclease involved in DNA repair, is responsible for the specific integration of short DNA fragments. This suggests that short and long fragments are imported through distinct recombination pathways. We also show that short fragments are frequently clustered with longer fragments, suggesting that both pathways may be mechanistically linked. These findings provide a novel basis to explain how H. pylori can fine-tune the genetic diversity acquired by transformation.


Surface export of GAPDH/SDH, a glycolytic enzyme, is essential for Streptococcus pyogenes virulence.

  • Hong Jin‎ et al.
  • mBio‎
  • 2011‎

Streptococcal surface dehydrogenase (SDH) (glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) is an anchorless major multifunctional surface protein in group A Streptococcus (GAS) with the ability to bind important mammalian proteins, including plasmin(ogen). Although several biological properties of SDH are suggestive of its possible role in GAS virulence, its direct role in GAS pathogenesis has not been ascertained because it is essential for GAS survival. Thus, it has remained enigmatic as to "how and why" SDH/GAPDH is exported onto the bacterial surface. The present investigation highlights "why" SDH is exported onto the GAS surface. Differential microarray-based genome-wide transcript abundance analysis was carried out using a specific mutant, which was created by inserting a hydrophobic tail at the C-terminal end of SDH (M1-SDH(HBtail)) and thus preventing its exportation onto the GAS surface. This analysis revealed downregulation of the majority of genes involved in GAS virulence and genes belonging to carbohydrate and amino acid metabolism and upregulation of those related to lipid metabolism. The complete attenuation of this mutant for virulence in the mouse model and the decreased and increased virulence of the wild-type and mutant strains postcomplementation with SDH(HBtail) and SDH, respectively, indicated that the SDH surface export indeed regulates GAS virulence. M1-SDH(HBtail) also displayed unaltered growth patterns, increased intracellular ATP concentration and Hpr double phosphorylation, and significantly reduced pH tolerance, streptolysin S, and SpeB activities. These phenotypic and physiological changes observed in the mutant despite the unaltered expression levels of established transcriptional regulators further highlight the fact that SDH interfaces with many regulators and its surface exportation is essential for GAS virulence.


Two distinct ferredoxins are essential for nitrogen fixation by the iron nitrogenase in Rhodobacter capsulatus.

  • Holly Addison‎ et al.
  • mBio‎
  • 2024‎

Nitrogenases are the only enzymes able to fix gaseous nitrogen into bioavailable ammonia and hence are essential for sustaining life. Catalysis by nitrogenases requires both a large amount of ATP and electrons donated by strongly reducing ferredoxins or flavodoxins. Our knowledge about the mechanisms of electron transfer to nitrogenase enzymes is limited: The electron transport to the iron (Fe)-nitrogenase has hardly been investigated. Here, we characterized the electron transfer pathway to the Fe-nitrogenase in Rhodobacter capsulatus via proteome analyses, genetic deletions, complementation studies, and phylogenetics. Proteome analyses revealed an upregulation of four ferredoxins under nitrogen-fixing conditions reliant on the Fe-nitrogenase in a molybdenum nitrogenase knockout strain, compared to non-nitrogen-fixing conditions. Based on these findings, R. capsulatus strains with deletions of ferredoxin (fdx) and flavodoxin (fld, nifF) genes were constructed to investigate their roles in nitrogen fixation by the Fe-nitrogenase. R. capsulatus deletion strains were characterized by monitoring diazotrophic growth and Fe-nitrogenase activity in vivo. Only deletions of fdxC or fdxN resulted in slower growth and reduced Fe-nitrogenase activity, whereas the double deletion of both fdxC and fdxN abolished diazotrophic growth. Differences in the proteomes of ∆fdxC and ∆fdxN strains, in conjunction with differing plasmid complementation behaviors of fdxC and fdxN, indicate that the two Fds likely possess different roles and functions. These findings will guide future engineering of the electron transport systems to nitrogenase enzymes, with the aim of increased electron flux and product formation.IMPORTANCENitrogenases are essential for biological nitrogen fixation, converting atmospheric nitrogen gas to bioavailable ammonia. The production of ammonia by diazotrophic organisms, harboring nitrogenases, is essential for sustaining plant growth. Hence, there is a large scientific interest in understanding the cellular mechanisms for nitrogen fixation via nitrogenases. Nitrogenases rely on highly reduced electrons to power catalysis, although we lack knowledge as to which proteins shuttle the electrons to nitrogenases within cells. Here, we characterized the electron transport to the iron (Fe)-nitrogenase in the model diazotroph Rhodobacter capsulatus, showing that two distinct ferredoxins are very important for nitrogen fixation despite having different redox centers. In addition, our research expands upon the debate on whether ferredoxins have functional redundancy or perform distinct roles within cells. Here, we observe that both essential ferredoxins likely have distinct roles based on differential proteome shifts of deletion strains and different complementation behaviors.


TgTKL1 Is a Unique Plant-Like Nuclear Kinase That Plays an Essential Role in Acute Toxoplasmosis.

  • Joseph M Varberg‎ et al.
  • mBio‎
  • 2018‎

In the protozoan parasite Toxoplasma gondii, protein kinases have been shown to play key roles in regulating parasite motility, invasion, replication, egress, and survival within the host. The tyrosine kinase-like (TKL) family of proteins are an unexplored set of kinases in Toxoplasma Of the eight annotated TKLs in the Toxoplasma genome, a recent genome-wide loss-of-function screen showed that six are important for tachyzoite fitness. By utilizing an endogenous tagging approach, we showed that these six T. gondii TKLs (TgTKLs) localize to various subcellular compartments, including the nucleus, the cytosol, the inner membrane complex, and the Golgi apparatus. To gain insight into the function of TKLs in Toxoplasma, we first characterized TgTKL1, which contains the plant-like enhanced disease resistance 1 (EDR1) domain and localizes to the nucleus. TgTKL1 knockout parasites displayed significant defects in progression through the lytic cycle; we show that the defects were due to specific impairment of host cell attachment. Transcriptomics analysis identified over 200 genes of diverse functions that were differentially expressed in TgTKL1 knockout parasites. Importantly, numerous genes implicated in host cell attachment and invasion were among those most significantly downregulated, resulting in defects in microneme secretion and processing. Significantly, all of the mice inoculated intraperitoneally with TgTKL1 knockout parasites survived the infection, suggesting that TgTKL1 plays an essential role in acute toxoplasmosis. Together, these findings suggest that TgTKL1 mediates a signaling pathway that regulates the expression of multiple factors required for parasite virulence, underscoring the potential of this kinase as a novel therapeutic target.IMPORTANCEToxoplasma gondii is a protozoan parasite that can cause chronic and life-threatening disease in mammals; new drugs are greatly needed for treatment. One attractive group of drug targets consists of parasite kinases containing unique features that distinguish them from host proteins. In this report, we identify and characterize a previously unstudied kinase, TgTKL1, that localizes to the nucleus and contains a domain architecture unique to plants and protozoa. By disrupting TgTKL1, we showed that this kinase is required for the proper expression of hundreds of genes, including many that are required for the parasite to gain entry into the host cell. Specifically, parasites lacking TgTKL1 have defects in host cell attachment, resulting in impaired growth in vitro and a complete loss of virulence in mice. This report provides insight into the importance of the parasite tyrosine kinase-like kinases and establishes TgTKL1 as a novel and essential virulence factor in Toxoplasma.


The Leishmania donovani Ortholog of the Glycosylphosphatidylinositol Anchor Biosynthesis Cofactor PBN1 Is Essential for Host Infection.

  • Adam Roberts‎ et al.
  • mBio‎
  • 2022‎

Visceral leishmaniasis is a deadly infectious disease caused by Leishmania donovani, a kinetoplastid parasite for which no licensed vaccine is available. To identify potential vaccine candidates, we systematically identified genes encoding putative cell surface and secreted proteins essential for parasite viability and host infection. We identified a protein encoded by LdBPK_061160 which, when ablated, resulted in a remarkable increase in parasite adhesion to tissue culture flasks. Here, we show that this phenotype is caused by the loss of glycosylphosphatidylinositol (GPI)-anchored surface molecules and that LdBPK_061160 encodes a noncatalytic component of the L. donovani GPI-mannosyltransferase I (GPI-MT I) complex. GPI-anchored surface molecules were rescued in the LdBPK_061160 mutant by the ectopic expression of both human genes PIG-X and PIG-M, but neither gene could complement the phenotype alone. From further sequence comparisons, we conclude that LdBPK_061160 is the functional orthologue of yeast PBN1 and mammalian PIG-X, which encode the noncatalytic subunits of their respective GPI-MT I complexes, and we assign LdBPK_061160 as LdPBN1. The LdPBN1 mutants could not establish a visceral infection in mice, a phenotype that was rescued by constitutive expression of LdPBN1. Although mice infected with the null mutant did not develop an infection, exposure to these parasites provided significant protection against subsequent infection with a virulent strain. In summary, we have identified the orthologue of the PBN1/PIG-X noncatalytic subunit of GPI-MT I in trypanosomatids, shown that it is essential for infection in a murine model of visceral leishmaniasis, and demonstrated that the LdPBN1 mutant shows promise for the development of an attenuated live vaccine. IMPORTANCE Visceral leishmaniasis is a deadly infectious disease caused by the parasites Leishmania donovani and Leishmania infantum. It remains a major global health problem, and there is no licensed highly effective vaccine. Molecules that are displayed on the surface of parasites are involved in host-parasite interactions and have important roles in immune evasion, making vaccine development difficult. One major way in which parasite surface molecules are tethered to the surface is via glycophosphatidylinositol (GPI) anchors; however, the enzymes required for all the biosynthetic steps in these parasites are not known. Here, we identified the enzyme required for an essential step in the GPI anchor-biosynthetic pathway in L. donovani, and we show that while parasites lacking this gene are viable in vitro, they are unable to establish infections in mice, a property we show can be exploited to develop a live genetically attenuated parasite vaccine.


Vibrio cholerae CsrA Regulates ToxR Levels in Response to Amino Acids and Is Essential for Virulence.

  • Alexandra R Mey‎ et al.
  • mBio‎
  • 2015‎

ToxR is a major virulence gene regulator in Vibrio cholerae. Although constitutively expressed under many laboratory conditions, our previous work demonstrated that the level of ToxR increases significantly when cells are grown in the presence of the 4 amino acids asparagine, arginine, glutamate, and serine (NRES). We show here that the increase in ToxR production in response to NRES requires the Var/Csr global regulatory circuit. The VarS/VarA two-component system controls the amount of active CsrA, a small RNA-binding protein involved in the regulation of a wide range of cellular processes. Our data show that a varA mutant, which is expected to overproduce active CsrA, had elevated levels of ToxR in the absence of the NRES stimulus. Conversely, specific amino acid substitutions in CsrA were associated with defects in ToxR production in response to NRES. These data indicate that CsrA is a positive regulator of ToxR levels. Unlike previously described effects of CsrA on virulence gene regulation, the effects of CsrA on ToxR were not mediated through quorum sensing and HapR. CsrA is likely essential in V. cholerae, since a complete deletion of csrA was not possible; however, point mutations in CsrA were tolerated well. The CsrA Arg6His mutant had wild-type growth in vitro but was severely attenuated in the infant mouse model of V. cholerae infection, showing that CsrA is critical for pathogenesis. This study has broad implications for our understanding of how V. cholerae integrates its response to environmental cues with the regulation of important virulence genes.


Sustained Control of Pyruvate Carboxylase by the Essential Second Messenger Cyclic di-AMP in Bacillus subtilis.

  • Larissa Krüger‎ et al.
  • mBio‎
  • 2021‎

In Bacillus subtilis and other Gram-positive bacteria, cyclic di-AMP is an essential second messenger that signals potassium availability by binding to a variety of proteins. In some bacteria, c-di-AMP also binds to the pyruvate carboxylase to inhibit its activity. We have discovered that in B. subtilis the c-di-AMP target protein DarB, rather than c-di-AMP itself, specifically binds to pyruvate carboxylase both in vivo and in vitro. This interaction stimulates the activity of the enzyme, as demonstrated by in vitro enzyme assays and in vivo metabolite determinations. Both the interaction and the activation of enzyme activity require apo-DarB and are inhibited by c-di-AMP. Under conditions of potassium starvation and corresponding low c-di-AMP levels, the demand for citric acid cycle intermediates is increased. Apo-DarB helps to replenish the cycle by activating both pyruvate carboxylase gene expression and enzymatic activity via triggering the stringent response as a result of its interaction with the (p)ppGpp synthetase Rel and by direct interaction with the enzyme, respectively. IMPORTANCE If bacteria experience a starvation for potassium, by far the most abundant metal ion in every living cell, they have to activate high-affinity potassium transporters, switch off growth activities such as translation and transcription of many genes or replication, and redirect the metabolism in a way that the most essential functions of potassium can be taken over by metabolites. Importantly, potassium starvation triggers a need for glutamate-derived amino acids. In many bacteria, the responses to changing potassium availability are orchestrated by a nucleotide second messenger, cyclic di-AMP. c-di-AMP binds to factors involved directly in potassium homeostasis and to dedicated signal transduction proteins. Here, we demonstrate that in the Gram-positive model organism Bacillus subtilis, the c-di-AMP receptor protein DarB can bind to and, thus, activate pyruvate carboxylase, the enzyme responsible for replenishing the citric acid cycle. This interaction takes place under conditions of potassium starvation if DarB is present in the apo form and the cells are in need of glutamate. Thus, DarB links potassium availability to the control of central metabolism.


Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440.

  • Nicolas T Wirth‎ et al.
  • mBio‎
  • 2023‎

Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which "landed" in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host-instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings-yielding genome-reduced cell factories with enhanced properties and genetic stability.


Mitochondrial Pyruvate Carrier Subunits Are Essential for Pyruvate-Driven Respiration, Infectivity, and Intracellular Replication of Trypanosoma cruzi.

  • Raquel S Negreiros‎ et al.
  • mBio‎
  • 2021‎

Pyruvate is the final metabolite of glycolysis and can be converted into acetyl coenzyme A (acetyl-CoA) in mitochondria, where it is used as the substrate for the tricarboxylic acid cycle. Pyruvate availability in mitochondria depends on its active transport through the heterocomplex formed by the mitochondrial pyruvate carriers 1 and 2 (MPC1/MPC2). We report here studies on MPC1/MPC2 of Trypanosoma cruzi, the etiologic agent of Chagas disease. Endogenous tagging of T. cruziMPC1 (TcMPC1) and TcMPC2 with 3×c-Myc showed that both encoded proteins colocalize with MitoTracker to the mitochondria of epimastigotes. Individual knockout (KO) of TcMPC1 and TcMPC2 genes using CRISPR/Cas9 was confirmed by PCR and Southern blot analyses. Digitonin-permeabilized TcMPC1-KO and TcMPC2-KO epimastigotes showed reduced O2 consumption rates when pyruvate, but not succinate, was used as the mitochondrial substrate, while α-ketoglutarate increased their O2 consumption rates due to an increase in α-ketoglutarate dehydrogenase activity. Defective mitochondrial pyruvate import resulted in decreased Ca2+ uptake. The inhibitors UK5099 and malonate impaired pyruvate-driven oxygen consumption in permeabilized control cells. Inhibition of succinate dehydrogenase by malonate indicated that pyruvate needs to be converted into succinate to increase respiration. TcMPC1-KO and TcMPC2-KO epimastigotes showed little growth differences in standard or low-glucose culture medium. However, the ability of trypomastigotes to infect tissue culture cells and replicate as intracellular amastigotes was decreased in TcMPC-KOs. Overall, T. cruzi MPC1 and MPC2 are essential for cellular respiration in the presence of pyruvate, invasion of host cells, and replication of amastigotes.IMPORTANCETrypanosoma cruzi is the causative agent of Chagas disease. Pyruvate is the end product of glycolysis, and its transport into the mitochondrion is mediated by the mitochondrial pyruvate carrier (MPC) subunits. Using the CRISPR/Cas9 technique, we generated individual T. cruziMPC1 (TcMPC1) and TcMPC2 knockouts and demonstrated that they are essential for pyruvate-driven respiration. Interestingly, although glycolysis was reported as not an important source of energy for the infective stages, MPC was essential for normal host cell invasion and intracellular replication.


Chlamydia trachomatis Plasmid Gene Protein 3 Is Essential for the Establishment of Persistent Infection and Associated Immunopathology.

  • Chunfu Yang‎ et al.
  • mBio‎
  • 2020‎

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease afflicting hundreds of millions of people globally. A fundamental but poorly understood pathophysiological characteristic of chlamydial infection is the propensity to cause persistent infection that drives damaging inflammatory disease. The chlamydial plasmid is a virulence factor, but its role in the pathogenesis of persistent infection capable of driving immunopathology is unknown. Here, we show by using mouse and nonhuman primate infection models that the secreted plasmid gene protein 3 (Pgp3) is essential for establishing persistent infection. Ppg3-dependent persistent genital tract infection resulted in a severe endometritis caused by an intense infiltration of endometrial submucosal macrophages. Pgp3 released from the cytosol of lysed infected oviduct epithelial cells, not organism outer membrane-associated Pgp3, inhibited the chlamydial killing activity of antimicrobial peptides. Genetic Pgp3 rescue experiments in cathelin-related antimicrobial peptide (CRAMP)-deficient mice showed Pgp3-targeted antimicrobial peptides to subvert innate immunity as a pathogenic strategy to establish persistent infection. These findings provide important advances in understanding the role of Pgp3 in the pathogenesis of persistent chlamydial infection and associated immunopathology.IMPORTANCEChlamydia trachomatis can cause persistent infection that drives damaging inflammatory responses resulting in infertility and blindness. Little is known about chlamydial genes that cause persistence or factors that drive damaging pathology. In this work, we show that the C. trachomatis plasmid protein gene 3 (Pgp3) is the essential virulence factor for establishing persistent female genital tract infection and provide supportive evidence that Pgp3 functions similarly in a nonhuman primate trachoma model. We further show that persistent Ppg3-dependent infection drives damaging immunopathology. These results are important advances in understanding the pathophysiology of chlamydial persistence.


Genome-Wide Knockout Screen Identifies Human Sialomucin CD164 as an Essential Entry Factor for Lymphocytic Choriomeningitis Virus.

  • Jamin Liu‎ et al.
  • mBio‎
  • 2022‎

Lymphocytic choriomeningitis virus (LCMV) is a well-studied mammarenavirus that can be fatal in congenital infections. However, our understanding of LCMV and its interactions with human host factors remains incomplete. Here, host determinants affecting LCMV infection were investigated through a genome-wide CRISPR knockout screen in A549 cells, a human lung adenocarcinoma line. We identified and validated a variety of novel host factors that play a functional role in LCMV infection. Among these, knockout of the sialomucin CD164, a heavily glycosylated transmembrane protein, was found to ablate infection with multiple LCMV strains but not other hemorrhagic mammarenaviruses in several cell types. Further characterization revealed a dependency of LCMV entry on the cysteine-rich domain of CD164, including an N-linked glycosylation site at residue 104 in that region. Given the documented role of LCMV with respect to transplacental human infections, CD164 expression was investigated in human placental tissue and placental cell lines. CD164 was found to be highly expressed in the cytotrophoblast cells, an initial contact site for pathogens within the placenta, and LCMV infection in placental cells was effectively blocked using a monoclonal antibody specific to the cysteine-rich domain of CD164. Together, this study identifies novel factors associated with LCMV infection of human tissues and highlights the importance of CD164, a sialomucin that previously had not been associated with viral infection. IMPORTANCE Lymphocytic choriomeningitis virus (LCMV) is a human-pathogenic mammarenavirus that can be fatal in congenital infections. Although frequently used in the study of persistent infections in the field of immunology, aspects of this virus's life cycle remain incomplete. For example, while viral entry has been shown to depend on a cell adhesion molecule, DAG1, genetic knockout of this gene allows for residual viral infection, implying that additional receptors can mediate cell entry. The significance of our study is the identification of host factors important for successful infection, including the sialomucin CD164, which had not been previously associated with viral infection. We demonstrated that CD164 is essential for LCMV entry into human cells and can serve as a possible therapeutic target for treatment of congenital infection.


Peptide Uptake Is Essential for Borrelia burgdorferi Viability and Involves Structural and Regulatory Complexity of its Oligopeptide Transporter.

  • Ashley M Groshong‎ et al.
  • mBio‎
  • 2017‎

Borrelia burgdorferi is an extreme amino acid (AA) auxotroph whose genome encodes few free AA transporters and an elaborate oligopeptide transport system (B. burgdorferi Opp [BbOpp]). BbOpp consists of five oligopeptide-binding proteins (OBPs), two heterodimeric permeases, and a heterodimeric nucleotide-binding domain (NBD). Homology modeling based on the crystal structure of liganded BbOppA4 revealed that each OBP likely binds a distinct range of peptides. Transcriptional analyses demonstrated that the OBPs are differentially and independently regulated whereas the permeases and NBDs are constitutively expressed. A conditional NBD mutant failed to divide in the absence of inducer and replicated in an IPTG (isopropyl-β-d-thiogalactopyranoside) concentration-dependent manner. NBD mutants grown without IPTG exhibited an elongated morphotype lacking division septa, often with flattening at the cell center due to the absence of flagellar filaments. Following cultivation in dialysis membrane chambers, NBD mutants recovered from rats not receiving IPTG also displayed an elongated morphotype. The NBD mutant was avirulent by needle inoculation, but infectivity was partially restored by oral administration of IPTG to infected mice. We conclude that peptides are a major source of AAs for B. burgdorferi both in vitro and in vivo and that peptide uptake is essential for regulation of morphogenesis, cell division, and virulence.IMPORTANCEBorrelia burgdorferi, the causative agent of Lyme disease, is an extreme amino acid (AA) auxotroph with a limited repertoire of annotated single-AA transporters. A major issue is how the spirochete meets its AA requirements as it transits between its arthropod vector and mammalian reservoir. While previous studies have confirmed that the B. burgdorferi oligopeptide transport (opp) system is capable of importing peptides, the importance of the system for viability and pathogenesis has not been established. Here, we evaluated the opp system structurally and transcriptionally to elucidate its ability to import a wide range of peptides during the spirochete's enzootic cycle. Additionally, using a novel mutagenesis strategy to abrogate opp transporter function, we demonstrated that peptide uptake is essential for bacterial viability, morphogenesis, and infectivity. Our studies revealed a novel link between borrelial physiology and virulence and suggest that peptide uptake serves an intracellular signaling function regulating morphogenesis and division.


An apicomplexan bromodomain protein, TgBDP1, associates with diverse epigenetic factors to regulate essential transcriptional processes in Toxoplasma gondii.

  • Krista Fleck‎ et al.
  • mBio‎
  • 2023‎

The protozoan pathogen Toxoplasma gondii relies on tight regulation of gene expression to invade and establish infection in its host. The divergent gene regulatory mechanisms of Toxoplasma and related apicomplexan pathogens rely heavily on regulators of chromatin structure and histone modifications. The important contribution of histone acetylation for Toxoplasma in both acute and chronic infection has been demonstrated, where histone acetylation increases at active gene loci. However, the direct consequences of specific histone acetylation marks and the chromatin pathway that influences transcriptional regulation in response to the modification are unclear. As a reader of lysine acetylation, the bromodomain serves as a mediator between the acetylated histone and transcriptional regulators. Here we show that the bromodomain protein, TgBDP1, which is conserved among Apicomplexa and within the Alveolata superphylum, is essential for Toxoplasma asexual proliferation. Using cleavage under targets and tagmentation, we demonstrate that TgBDP1 is recruited to transcriptional start sites of a large proportion of parasite genes. Transcriptional profiling during TgBDP1 knockdown revealed that loss of TgBDP1 leads to major dysregulation of gene expression, implying multiple roles for TgBDP1 in both gene activation and repression. This is supported by interactome analysis of TgBDP1 demonstrating that TgBDP1 forms a core complex with two other bromodomain proteins and an ApiAP2 factor. This core complex appears to interact with other epigenetic factors such as nucleosome remodeling complexes. We conclude that TgBDP1 interacts with diverse epigenetic regulators to exert opposing influences on gene expression in the Toxoplasma tachyzoite. IMPORTANCE Histone acetylation is critical for proper regulation of gene expression in the single-celled eukaryotic pathogen Toxoplasma gondii. Bromodomain proteins are "readers" of histone acetylation and may link the modified chromatin to transcription factors. Here, we show that the bromodomain protein TgBDP1 is essential for parasite survival and that loss of TgBDP1 results in global dysregulation of gene expression. TgBDP1 is recruited to the promoter region of a large proportion of parasite genes, forms a core complex with two other bromodomain proteins, and interacts with different transcriptional regulatory complexes. We conclude that TgBDP1 is a key factor for sensing specific histone modifications to influence multiple facets of transcriptional regulation in Toxoplasma gondii.


The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.

  • Juvenal Lopez‎ et al.
  • mBio‎
  • 2020‎

The type VI secretion system (T6SS) is a critical weapon in bacterial warfare between Gram-negative bacteria. Although invaluable for niche establishment, this machine represents an energetic burden to its host bacterium. Acinetobacter baumannii is an opportunistic pathogen that poses a serious threat to public health due to its high rates of multidrug resistance. In some A. baumannii strains, the T6SS is transcriptionally downregulated by large multidrug resistance plasmids. Other strains, such as the clinical isolate AbCAN2, express T6SS-related genes but lack T6SS activity under laboratory conditions, despite not harboring these plasmids. This suggests that alternative mechanisms exist to repress the T6SS. Here, we used a transposon mutagenesis approach in AbCAN2 to identify novel T6SS repressors. Our screen revealed that the T6SS of this strain is inhibited by a homolog of VgrG, an essential structural component of all T6SSs reported to date. We named this protein inhibitory VgrG (VgrGi). Biochemical and in silico analyses demonstrated that the unprecedented inhibitory capability of VgrGi is due to a single amino acid mutation in a widely conserved C-terminal domain of unknown function, DUF2345. We also show that unlike in other bacteria, the C terminus of VgrG is essential for functional T6SS assembly in A. baumannii Our study provides insight into the architectural requirements underlying functional assembly of the T6SS of A. baumannii We propose that T6SS-inactivating point mutations are beneficial to the host bacterium, since they eliminate the energy cost associated with maintaining a functional T6SS, which appears to be unnecessary for A. baumannii virulence.IMPORTANCE Despite the clinical relevance of A. baumannii, little is known about its fundamental biology. Here, we show that a single amino acid mutation in VgrG, a critical T6SS structural protein, abrogates T6SS function. Given that this mutation was found in a clinical isolate, we propose that the T6SS of A. baumannii is probably not involved in virulence; this idea is supported by multiple genomic analyses showing that the majority of clinical A. baumannii strains lack proteins essential to the T6SS. We also show that, unlike in other species, the C terminus of VgrG is a unique architectural requirement for functional T6SS assembly in A. baumannii, suggesting that over evolutionary time, bacteria have developed changes to their T6SS architecture, leading to specialized systems.


Characterization of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential for B-cell transformation.

  • Bidisha Mitra‎ et al.
  • mBio‎
  • 2023‎

Epstein-Barr virus (EBV) causes multiple human cancers, including B-cell lymphomas. In cell culture, EBV converts healthy human B-cells into immortalized ones that grow continuously, which model post-transplant lymphomas. Constitutive signaling from two cytoplasmic tail domains of the EBV oncogene latent membrane protein 1 (LMP1) is required for this transformation, yet there has not been systematic analysis of their host gene targets. We identified that only signaling from the membrane proximal domain is required for survival of these EBV-immortalized cells and that its loss triggers apoptosis. We identified key LMP1 target genes, whose abundance changed significantly with loss of LMP1 signals, or that were instead upregulated in response to switching on signaling by one or both LMP1 domains in an EBV-uninfected human B-cell model. These included major anti-apoptotic factors necessary for EBV-infected B-cell survival. Bioinformatics analyses identified clusters of B-cell genes that respond differently to signaling by either or both domains.


GRWD1-WDR5-MLL2 Epigenetic Complex Mediates H3K4me3 Mark and Is Essential for Kaposi's Sarcoma-Associated Herpesvirus-Induced Cellular Transformation.

  • Shan Wei‎ et al.
  • mBio‎
  • 2021‎

Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is causally associated with numerous cancers. The mechanism of KSHV-induced oncogenesis remains unclear. By performing a CRISPR-Cas9 screening in a model of KSHV-induced cellular transformation of primary cells, we identified epigenetic regulators that were essential for KSHV-induced cellular transformation. Examination of TCGA data sets of the top 9 genes, including glutamate-rich WD repeat containing 1 (GRWD1), a WD40 family protein upregulated by KSHV, that had positive effects on cell proliferation and survival of KSHV-transformed cells (KMM) but not the matched primary cells (MM), uncovered the predictive values of their expressions for patient survival in numerous types of cancer. We revealed global epigenetic remodeling including H3K4me3 epigenetic active mark in KMM cells compared to MM cells. Knockdown of GRWD1 inhibited cell proliferation, cellular transformation, and tumor formation and caused downregulation of global H3K4me3 mark in KMM cells. GRWD1 interacted with WD repeat domain 5 (WDR5), the core protein of H3K4 methyltransferase complex, and several H3K4me3 methyltransferases, including myeloid leukemia 2 (MLL2). Knockdown of WDR5 and MLL2 phenocopied GRWD1 knockdown, caused global reduction of H3K4me3 mark, and altered the expression of similar sets of genes. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses further identified common and distinct cellular genes and pathways that were regulated by GRWD1, WDR5, and MLL2. These results indicate that KSHV hijacks the GRWD1-WDR5-MLL2 epigenetic complex to regulate H3K4me3 methylation of specific genes, which is essential for KSHV-induced cellular transformation. Our work has identified an epigenetic complex as a novel therapeutic target for KSHV-induced cancers. IMPORTANCE By performing a genome-wide CRISPR-Cas9 screening, we have identified cellular epigenetic regulators that are essential for KSHV-induced cellular transformation. Among them, GRWD1 regulates epigenetic active mark H3K4me3 by interacting with WDR5 and MLL2 and recruiting them to chromatin loci of specific genes in KSHV-transformed cells. Hence, KSHV hijacks the GRWD1-WDR5-MLL2 complex to remodel cellular epigenome and induce cellular transformation. Since the dysregulation of GRWD1 is associated with poor prognosis in several types of cancer, GRWD1 might also be a critical driver in other viral or nonviral cancers.


The two-component system WalKR provides an essential link between cell wall homeostasis and DNA replication in Staphylococcus aureus.

  • Liam K R Sharkey‎ et al.
  • mBio‎
  • 2023‎

Among the 16 two-component systems in the opportunistic human pathogen Staphylococcus aureus, only WalKR is essential. Like the orthologous systems in other Bacillota, S. aureus WalKR controls autolysins involved in peptidoglycan remodeling and is therefore intimately involved in cell division. However, despite the importance of WalKR in S. aureus, the basis for its essentiality is not understood and the regulon is poorly defined. Here, we defined a consensus WalR DNA-binding motif and the direct WalKR regulon by using functional genomics, including chromatin immunoprecipitation sequencing, with a panel of isogenic walKR mutants that had a spectrum of altered activities. Consistent with prior findings, the direct regulon includes multiple autolysin genes. However, this work also revealed that WalR directly regulates at least five essential genes involved in lipoteichoic acid synthesis (ltaS): translation (rplK), DNA compaction (hup), initiation of DNA replication (dnaA, hup) and purine nucleotide metabolism (prs). Thus, WalKR in S. aureus serves as a polyfunctional regulator that contributes to fundamental control over critical cell processes by coordinately linking cell wall homeostasis with purine biosynthesis, protein biosynthesis, and DNA replication. Our findings further address the essentiality of this locus and highlight the importance of WalKR as a bona fide target for novel anti-staphylococcal therapeutics. IMPORTANCE The opportunistic human pathogen Staphylococcus aureus uses an array of protein sensing systems called two-component systems (TCS) to sense environmental signals and adapt its physiology in response by regulating different genes. This sensory network is key to S. aureus versatility and success as a pathogen. Here, we reveal for the first time the full extent of the regulatory network of WalKR, the only staphylococcal TCS that is indispensable for survival under laboratory conditions. We found that WalKR is a master regulator of cell growth, coordinating the expression of genes from multiple, fundamental S. aureus cellular processes, including those involved in maintaining cell wall metabolism, protein biosynthesis, nucleotide metabolism, and the initiation of DNA replication.


CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes.

  • Daniel J Nasko‎ et al.
  • mBio‎
  • 2019‎

Viral infection exerts selection pressure on marine microbes, as virus-induced cell lysis causes 20 to 50% of cell mortality, resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system, which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, no viral genes should be preferentially matched by CRISPR spacers. However, if there are differences in effectiveness, certain viral genes may demonstrate a greater frequency of CRISPR spacer matches. Indeed, homology search analyses of bacterioplankton CRISPR spacer sequences against virioplankton sequences revealed preferential matching of replication proteins, nucleic acid binding proteins, and viral structural proteins. Positive selection pressure for effective viral defense is one parsimonious explanation for these observations. CRISPR spacers from virioplankton metagenomes preferentially matched methyltransferase and phage integrase genes within virioplankton sequences. These virioplankton CRISPR spacers may assist infected host cells in defending against competing phage. Analyses also revealed that half of the spacer-matched viral genes were unknown, some genes matched several spacers, and some spacers matched multiple genes, a many-to-many relationship. Thus, CRISPR spacer matching may be an evolutionary algorithm, agnostically identifying those genes under stringent selection pressure for sustaining viral infection and lysis. Investigating this subset of viral genes could reveal those genetic mechanisms essential to virus-host interactions and provide new technologies for optimizing CRISPR defense in beneficial microbes.IMPORTANCE The CRISPR-Cas system is one means by which bacterial and archaeal populations defend against viral infection which causes 20 to 50% of cell mortality in the ocean. We tested the hypothesis that certain viral genes are preferentially targeted for the initial attack of the CRISPR-Cas system on a viral genome. Using CASC, a pipeline for CRISPR spacer discovery, and metagenome data from oceanic microbes and viruses, we found a clear subset of viral genes with high match frequencies to CRISPR spacers. Moreover, we observed a many-to-many relationship of spacers and viral genes. These high-match viral genes were involved in nucleotide metabolism, DNA methylation, and viral structure. It is possible that CRISPR spacer matching is an evolutionary algorithm pointing to those viral genes most important to sustaining infection and lysis. Studying these genes may advance the understanding of virus-host interactions in nature and provide new technologies for leveraging CRISPR-Cas systems in beneficial microbes.


CRISPR/Cas9 Genome Editing Reveals That the Intron Is Not Essential for var2csa Gene Activation or Silencing in Plasmodium falciparum.

  • Jessica M Bryant‎ et al.
  • mBio‎
  • 2017‎

Plasmodium falciparum relies on monoallelic expression of 1 of 60 var virulence genes for antigenic variation and host immune evasion. Each var gene contains a conserved intron which has been implicated in previous studies in both activation and repression of transcription via several epigenetic mechanisms, including interaction with the var promoter, production of long noncoding RNAs (lncRNAs), and localization to repressive perinuclear sites. However, functional studies have relied primarily on artificial expression constructs. Using the recently developed P. falciparum clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we directly deleted the var2csa P. falciparum 3D7_1200600 (Pf3D7_1200600) endogenous intron, resulting in an intronless var gene in a natural, marker-free chromosomal context. Deletion of the var2csa intron resulted in an upregulation of transcription of the var2csa gene in ring-stage parasites and subsequent expression of the PfEMP1 protein in late-stage parasites. Intron deletion did not affect the normal temporal regulation and subsequent transcriptional silencing of the var gene in trophozoites but did result in increased rates of var gene switching in some mutant clones. Transcriptional repression of the intronless var2csa gene could be achieved via long-term culture or panning with the CD36 receptor, after which reactivation was possible with chondroitin sulfate A (CSA) panning. These data suggest that the var2csa intron is not required for silencing or activation in ring-stage parasites but point to a subtle role in regulation of switching within the var gene family.IMPORTANCEPlasmodium falciparum is the most virulent species of malaria parasite, causing high rates of morbidity and mortality in those infected. Chronic infection depends on an immune evasion mechanism termed antigenic variation, which in turn relies on monoallelic expression of 1 of ~60 var genes. Understanding antigenic variation and the transcriptional regulation of monoallelic expression is important for developing drugs and/or vaccines. The var gene family encodes the antigenic surface proteins that decorate infected erythrocytes. Until recently, studying the underlying genetic elements that regulate monoallelic expression in P. falciparum was difficult, and most studies relied on artificial systems such as episomal reporter genes. Our study was the first to use CRISPR/Cas9 genome editing for the functional study of an important, conserved genetic element of var genes-the intron-in an endogenous, episome-free manner. Our findings shed light on the role of the var gene intron in transcriptional regulation of monoallelic expression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: