Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Immunofluorescence can assess the efficacy of mTOR pathway therapeutic agent Everolimus in breast cancer models.

  • Chun-Ting Kuo‎ et al.
  • Scientific reports‎
  • 2019‎

When breast cancer patients start to exhibit resistance to hormonal therapy or chemotherapy, the mTOR inhibitor everolimus can be considered as an alternative therapeutic agent. Everolimus can deregulate the PI3K/AKT/mTOR pathway and affect a range of cellular functions. In some patients, the agent does not exhibit the desired efficacy and, even worse, not without the associated side effects. This study assessed the use of immunofluorescence (IF) as a modality to fill this unmet need of predicting the efficacy of everolimus prior to administration. Cell viability and MTT assays based on IF intensities of pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 on breast cancer cells (Hs578T, MCF7, BT474, MDA-MB-231) and patient-derived cell culture from metastatic sites (ABC-82T and ABC-16TX1) were interrogated. Results show that independent pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 IF expressions can classify data into different groups: everolimus sensitive and resistant. The combined IF baseline intensity of these proteins is predictive of the efficacy of everolimus, and their intensities change dynamically when cells are resistant to everolimus. Furthermore, mTOR resistance is not only consequence of the AKT/mTOR pathway but also through the LKB1 or MAPK/ERK pathway. The LKB1 and pho-GSK3β may also be potential predictive markers for everolimus.


Nanosecond Pulsed Electric Fields Enhance the Anti-tumour Effects of the mTOR Inhibitor Everolimus against Melanoma.

  • Jie Dai‎ et al.
  • Scientific reports‎
  • 2017‎

The PI3K/mTOR/AKT pathway is activated in most melanomas, but mTOR inhibitors used singly have limited activity against advanced melanomas. The application of nanosecond pulsed electric fields (nsPEFs) is a promising cancer therapy approach. In this study, we evaluated the synergistic anti-tumour efficacy of the mTOR inhibitor everolimus in conjunction with nsPEFs against melanoma. The combined treatment of nsPEFs and everolimus gradually decreased cell growth concurrent with nsPEF intensity. nsPEFs alone or combined with everolimus could promote melanoma cell apoptosis, accompanied with a loss in cellular mitochondrial membrane potential and an increase in Ca2+ levels. In vivo experiments showed that a combination of the mTOR inhibitor everolimus and nsPEFs improved the inhibitory effect, and all skin lesions caused by nsPEFs healed in 1 week without any observed adverse effect. Combination treatment induced caspase-dependent apoptosis through the upregulation of the pro-apoptotic factor Bax and downregulation of the anti-apoptotic factor Bcl-2. Everolimus and nsPEFs synergistically inhibited angiogenesis by decreasing the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), and CD34. Our findings indicate that nsPEFs in combination with an mTOR inhibitor can be used as a potential treatment approach for advanced melanoma.


Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells.

  • Abderrahim El Guerrab‎ et al.
  • Scientific reports‎
  • 2020‎

Triple-negative breast cancers (TNBC) are unlikely to respond to hormonal therapies and anti-HER2-targeted therapies. TNBCs overexpress EGFR and exhibit constitutive activation of the PI3K/AKT/mTOR signalling pathway. We hypothesized that simultaneously blocking EGFR and mTOR could be a potential therapeutic strategy for the treatment of TNBC. We examined the antitumour activity of the mTOR inhibitor everolimus combined with the EGFR tyrosine kinase inhibitor gefitinib in TNBC cell with or without activating mutations in the PI3K/AKT/mTOR signalling pathway. We demonstrated that everolimus and gefitinib induced synergistic growth inhibition in the PI3K and PTEN-mutant CAL-51 cell line but not in the PTEN-null HCC-1937 cell line. The antiproliferative effect was associated with synergistic inhibition of mTOR and P70S6K phosphorylation, as well as a significant reduction in 4E-BP1 activation in the CAL-51 cell line. We also showed that combination therapy significantly inhibited cell cycle progression and increased apoptosis in this cell line. Gene and protein expression analysis revealed significant downregulation of cell cycle regulators after exposure to combined treatment. Collectively, these results suggested that dual inhibition of mTOR and EGFR may be an effective treatment for TNBC with activating mutations of PI3K.


Novel Polymer-Free Everolimus-Eluting Stent Fabricated using Femtosecond Laser Improves Re-endothelialization and Anti-inflammation.

  • In-Ho Bae‎ et al.
  • Scientific reports‎
  • 2018‎

The aim of this study was to fabricate a novel polymer-free everolimus-eluting stent with nanostructure using a femtosecond laser (FSL). The stent were coated with everolimus (EVL) using FSL and electrospinning processes. The surface was rendered hydrophobic, which negatively affected both platelet adhesion (82.1%) and smooth muscle cell response. Animal study was performed using a porcine coronary restenosis model. The study groups were divided into 1) bare metal stent (BMS), 2) poly(L-lactide) (PLA)-based EVL drug eluting stent (DES), 3) commercial EVL-eluting DES, and 4) FSL-EVL-DES. After four weeks of stent implantation, various analyses were performed. Quantitative analysis showed that the amount of in-stent restenosis was higher in the BMS group (BMS; 27.8 ± 2.68%, PLA-based DES; 12.2 ± 0.57%, commercial DES; 9.8 ± 0.28%, and FSL-DES; 9.3 ± 0.25%, n = 10, p < 0.05). Specifically, the inflammation score was reduced in the FSL-DES group (1.9 ± 0.39, n = 10, p < 0.05). The increment in re-endothelialization in the FSL-DES group was confirmed by immunofluorescence analysis. Taken together, the novel polymer-free EVL-eluting stent fabricated using FSL can be an innovative DES with reduced risk of ISR, thrombosis, and inflammation.


Biodegradable polymer everolimus-eluting stents versus contemporary drug-eluting stents: a systematic review and meta‑analysis.

  • Juntao Yin‎ et al.
  • Scientific reports‎
  • 2023‎

In spite of similar efficacy and safety in pilot studies, compared with the contemporary durable polymer drug-eluting stent (DP-DES), the bioabsorbable polymer drug-eluting stent (BP-DES) may be more superior in promoting blood vessel healing. We sought to compare the safety and efficacy of everolimus-eluting BP-DES (BP-EES) with contemporary DP-DES through a meta-analysis. We performed this meta-analysis to provide further evidence of the safety and efficacy of BP-EES. Medline, Embase and the Cochrane library databases were searched for randomized controlled trials comparing clinical efficacy and safety of BP-EES versus contemporary DP-DES. Fifteen RCTs with a total of 15,572 patients were selected. The rate of MACE was 9.4% in patients receiving BP-EES and 7.3% receiving DP-EES (RR 1.13, 95% CI 0.99-1.29, p = 0.05; I2 = 46%). TLF and MI were also similar in both groups. Based on the available data, this review demonstrates that BP-EES displays a clinically comparable efficacy and safety profile to that of contemporary DP-DES at years of follow-up in patients undergoing PCI.


Lonafarnib and everolimus reduce pathology in iPSC-derived tissue engineered blood vessel model of Hutchinson-Gilford Progeria Syndrome.

  • Nadia O Abutaleb‎ et al.
  • Scientific reports‎
  • 2023‎

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, fatal genetic disease that accelerates atherosclerosis. With a limited pool of HGPS patients, clinical trials face unique challenges and require reliable preclinical testing. We previously reported a 3D tissue engineered blood vessel (TEBV) microphysiological system fabricated with iPSC-derived vascular cells from HGPS patients. HGPS TEBVs exhibit features of HGPS atherosclerosis including loss of smooth muscle cells, reduced vasoactivity, excess extracellular matrix (ECM) deposition, inflammatory marker expression, and calcification. We tested the effects of HGPS therapeutics Lonafarnib and Everolimus separately and together, currently in Phase I/II clinical trial, on HGPS TEBVs. Everolimus decreased reactive oxygen species levels, increased proliferation, reduced DNA damage in HGPS vascular cells, and improved vasoconstriction in HGPS TEBVs. Lonafarnib improved shear stress response of HGPS iPSC-derived endothelial cells (viECs) and reduced ECM deposition, inflammation, and calcification in HGPS TEBVs. Combination treatment with Lonafarnib and Everolimus produced additional benefits such as improved endothelial and smooth muscle marker expression and reduced apoptosis, as well as increased TEBV vasoconstriction and vasodilation. These results suggest that a combined trial of both drugs may provide cardiovascular benefits beyond Lonafarnib, if the Everolimus dose can be tolerated.


Adverse Cardiovascular Outcomes associated with Coronary Artery Bypass Surgery and Percutaneous Coronary Intervention with Everolimus Eluting Stents: A Meta-Analysis.

  • Pravesh Kumar Bundhun‎ et al.
  • Scientific reports‎
  • 2016‎

This study aimed to compare the mid-term adverse cardiovascular outcomes associated with Coronary Artery Bypass Surgery (CABG) and Percutaneous Coronary Intervention (PCI) with Everolimus Eluting Stents (EES). Electronic databases were searched for studies comparing the mid-term (>1 year) adverse cardiovascular outcomes between CABG and PCI with EES. Odd Ratios (OR) with 95% Confidence Intervals (CIs) were calculated and the pooled analyses were performed with RevMan 5.3 software. A total number of 5207 patients were involved in this analysis. No significant difference was observed in mortality between CABG and EES with OR: 0.90, 95% CI: 0.73-1.10; P = 0.30. Moreover, CABG was associated with a high stroke rate, with OR: 0.73, 95% CI: 0.45-1.17; P = 0.19, without any statistical significant. CABG was associated with significantly lower Major Adverse Cardiac Events and Myocardial Infarction with OR: 1.46, 95% CI: 1.05-2.04; P = 0.03 and OR: 1.46, 95% CI: 1.01-2.12; P = 0.05 respectively whereas PCI was associated with a significantly higher repeated revascularization with OR: 2.21; 95% CI: 1.76-2.77; P = 0.00001. In conclusion, significant differences were noted in several subgroups analyzing the mid-term cardiovascular outcomes between CABG and EES.


Vitamin D reverts resistance to the mTOR inhibitor everolimus in hepatocellular carcinoma through the activation of a miR-375/oncogenes circuit.

  • Donatella Paola Provvisiero‎ et al.
  • Scientific reports‎
  • 2019‎

Primary or acquired resistant mechanisms prevent the employment of individualized therapy with target drugs like the mTOR inhibitor everolimus (EVE) in hepatocellular carcinoma (HCC). The current study evaluated the effect of 1,25(OH)2Vitamin D (VitD) treatment on EVE sensitivity in established models of HCC cell lines resistant to everolimus (EveR). DNA content and colony formation assays, which measure the proliferative index, revealed that VitD pre-treatment re-sensitizes EveR cells to EVE treatment. The evaluation of epithelial and mesenchymal markers by western blot and immunofluorescence showed that VitD restored an epithelial phenotype in EveR cells, in which prolonged EVE treatment induced transition to mesenchymal phenotype. Moreover, VitD treatment prompted hepatic miRNAs regulation, evaluated by liver miRNA finder qPCR array. In particular, miR-375 expression was up-regulated by VitD in EveR cells, in which miR-375 was down-regulated compared to parental cells, with consequent inhibition of oncogenes involved in drug resistance and epithelial-mesenchymal transition (EMT) such as MTDH, YAP-1 and c-MYC. In conclusion, the results of the current study demonstrated that VitD can re-sensitize HCC cells resistant to EVE treatment triggering miR-375 up-regulation and consequently down-regulating several oncogenes responsible of EMT and drug resistance.


Combination of RAD001 (everolimus) and docetaxel reduces prostate and breast cancer cell VEGF production and tumour vascularisation independently of sphingosine-kinase-1.

  • Heba Alshaker‎ et al.
  • Scientific reports‎
  • 2017‎

Resistance to docetaxel is a key problem in current prostate and breast cancer management. We have recently discovered a new molecular mechanism of prostate cancer docetaxel chemoresistance mediated by the mammalian target of rapamycin (mTOR)/sphingosine-kinase-1 (SK1) pathway. Here we investigated the influence of this pathway on vascular endothelial growth factor (VEGF) production and tumour vascularisation in hormone resistant prostate and breast cancer models. Immunofluorescent staining of tumour sections from human oestrogen receptor (ER)-negative breast cancer patients showed a strong correlation between phosphorylated P70S6 kinase (mTOR downstream target), VEGF and SK1 protein expression. In hormone-insensitive prostate (PC3) and breast (MDA-MB-231 and BT-549) cancer cell lines the mTOR inhibitor RAD001 (everolimus) has significantly inhibited SK1 and VEGF expression, while low dose (5 nM) docetaxel had no significant effect. In these cell lines, SK1 overexpression slightly increased the basal levels of VEGF, but did not block the inhibitory effect of RAD001 on VEGF. In a human prostate xenograft model established in nude mice, RAD001 alone or in combination with docetaxel has suppressed tumour growth, VEGF expression and decreased tumour vasculature. Overall, our data demonstrate a new mechanism of an independent regulation of SK1 and VEGF by mTOR in hormone-insensitive prostate and breast cancers.


Pathological findings after third- and second-generation everolimus-eluting stent implantations in coronary arteries from autopsy cases and an atherosclerotic porcine model.

  • Suguru Migita‎ et al.
  • Scientific reports‎
  • 2021‎

Pathological changes after third-generation drug-eluting stent implantation remain unclear. We compared the tissue responses of coronary arteries after the implantation of third-generation abluminal biodegradable-polymer everolimus-eluting stent (3rd EES) and second-generation durable-polymer EES (2nd EES) using autopsy specimens and an atherosclerotic porcine model. We compared the histology of stented coronary arteries obtained by autopsy performed 1-10 months after 3rd EES (n (number of cases) = 4, stent-implanted period of 3-7 months) and 2nd EES (n (number of cases) = 9, stent-implanted period of 1-10 months) implantations. The ratio of covered stent struts was higher with 3rd EESs than with 2nd EESs (3rd; 0.824 ± 0.032 vs. 2nd; 0.736 ± 0.022, p = 0.035). Low-density lipoprotein receptor knockout minipigs were stented with 3rd or 2nd EES in the coronary arteries and the stented regions were investigated. The fibrin deposition around the 2nd EES was more prominent. Additionally, higher density of smooth muscle cells was confirmed after the 3rd EES implantation. Pathological examination after the 3rd EES demonstrated a combination of less fibrin deposition and more rapid acquisition of well-developed neointima as compared to the 2nd EES at autopsy and the atherosclerotic porcine model.


Network Meta-Analysis of the Effectiveness of Neoadjuvant Endocrine Therapy for Postmenopausal, HR-Positive Breast Cancer.

  • Wei Wang‎ et al.
  • Scientific reports‎
  • 2016‎

In clinical practice, it is necessary to define an optimal choice from many different therapeutic regimens. This study aimed to assess the efficacy and safety of neoadjuvant endocrine therapy (NET) for breast cancer patients. Randomized clinical trials were included. Nine studies comprising 2133 patients were included in the final analysis. Network meta-analysis showed that everolimus plus letrozole was more easily accepted by patients than exemestane (≥20wks) (odds ratio (OR): 856697.02, 95% confidence intervals (95%CI): 1.88 to 87242934...); exemestane (≥20wks) had worse acceptability than letrozole (OR: 0.00, 95%CI: 0.00 to 0.98). Letrozole produced a better clinical objective response (COR) than tamoxifen (OR: 1.99, 95%CI: 1.04 to 3.80). The incidence of fatigue between the anastrozole plus gefitinib group and the everolimus plus letrozole group was significantly different (OR: 0.08, 95%CI: 0.01 to 0.83). The exemestane (<20wks) plus celecoxib group had fewer hot flushes than others. Ranking showed the everolimus plus letrozole was most likely rank first in comparisons of COR and acceptability, and had a 64% possibility to rank first after stochastic multi-criteria acceptability analysis. In conclusion, our study showed that letrozole plus everolimus is the most effective treatment for postmenopausal, hormone receptor-positive breast cancer in the neoadjuvant setting.


A rapamycin derivative, biolimus, preferentially activates autophagy in vascular smooth muscle cells.

  • Yerin Kim‎ et al.
  • Scientific reports‎
  • 2018‎

Although rapamycin is a well-known conformational inhibitor of mTORC1, it is now widely used for treating arterial restenosis. Various rapamycin analogues (rapalogue) have been made for applying to drug-eluting stents. Here we show that two major rapalogues, everolimus and biolimus, exert a differential effect on the mTORC1-mediated signaling pathways in vascular smooth muscle cells. In balloon-injured carotid arteries, both rapalogues strongly inhibit neointimal hyperplasia. Signaling pathway analyses reveal that everolimus exert cytotoxicity by increasing cellular reactive oxygen species and consequently reduce energy metabolism. By contrast, biolimus confers a preferential induction of autophagy by more strongly activating major autophagy regulator, ULK1, in vascular smooth muscle cells than everolimus does. As a consequence, the implantation of biolimus-eluting stent reduces endothelial loss, which in turn reduces inflammation, in porcine coronary arteries. Thus, this study reveals that a chemical derivatization can cause a change among mTORC1-dependent signaling pathways in vascular smooth muscle cells, thereby enabling to elicit a differential efficacy on arterial restenosis.


Autophagy-enhancing drugs limit mucosal HIV-1 acquisition and suppress viral replication ex vivo.

  • Alexandra P M Cloherty‎ et al.
  • Scientific reports‎
  • 2021‎

Current direct-acting antiviral therapies are highly effective in suppressing HIV-1 replication. However, mucosal inflammation undermines prophylactic treatment efficacy, and HIV-1 persists in long-lived tissue-derived dendritic cells (DCs) and CD4+ T cells of treated patients. Host-directed strategies are an emerging therapeutic approach to improve therapy outcomes in infectious diseases. Autophagy functions as an innate antiviral mechanism by degrading viruses in specialized vesicles. Here, we investigated the impact of pharmaceutically enhancing autophagy on HIV-1 acquisition and viral replication. To this end, we developed a human tissue infection model permitting concurrent analysis of HIV-1 cellular targets ex vivo. Prophylactic treatment with autophagy-enhancing drugs carbamazepine and everolimus promoted HIV-1 restriction in skin-derived CD11c+ DCs and CD4+ T cells. Everolimus also decreased HIV-1 susceptibility to lab-adapted and transmitted/founder HIV-1 strains, and in vaginal Langerhans cells. Notably, we observed cell-specific effects of therapeutic treatment. Therapeutic rapamycin treatment suppressed HIV-1 replication in tissue-derived CD11c+ DCs, while all selected drugs limited viral replication in CD4+ T cells. Strikingly, both prophylactic and therapeutic treatment with everolimus or rapamycin reduced intestinal HIV-1 productive infection. Our findings highlight host autophagy pathways as an emerging target for HIV-1 therapies, and underscore the relevancy of repurposing clinically-approved autophagy drugs to suppress mucosal HIV-1 replication.


Long-term (2-5 years) adverse clinical outcomes associated with ZES versus SES, PES and EES: A Meta-Analysis.

  • Pravesh Kumar Bundhun‎ et al.
  • Scientific reports‎
  • 2017‎

Several previously published trials comparing Zotarolimus Eluting Stents (ZES) with Sirolimus Eluting Stents (SES), Paclitaxel Eluting Stents (PES) or Everolimus Eluting Stents (EES) at a follow up period of 1 year, were continually being followed up in order to assess the long-term outcomes. In this meta-analysis, we aimed to compare the long-term (2-5 years) adverse clinical outcomes which were associated with ZES versus SES, PES and EES following Percutaneous Coronary Intervention (PCI). Risk Ratios (RR) with 95% Confidence Intervals (CIs) were generated and the analysis was carried out by the RevMan 5.3 software. In this analysis with a total number of 17,606 participants, ZES and EES were associated with similar adverse outcomes including Stent Thrombosis (ST), myocardial infarction (MI), major adverse cardiac events and repeated revascularization. When ZES were compared with SES and PES during the long-term, MI and definite or probable ST were significantly lower with ZES, with RR: 1.35, 95% CI: 1.17-1.56; P = 0.0001 and RR: 1.91, 95% CI: 1.33-2.75; P = 0.0004 respectively whereas the other adverse outcomes were similarly manifested. Future research should be able to confirm this hypothesis.


Cyclodextrin inclusion complex inhibits circulating galectin-3 and FGF-7 and affects the reproductive integrity and mobility of Caco-2 cells.

  • Marwan Abdelmahmoud Abdelkarim Maki‎ et al.
  • Scientific reports‎
  • 2020‎

Galectin-3 (Gal-3) is a carbohydrate-binding protein, that promotes angiogenesis through mediating angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). There is strong evidence confirming FGF involvement in tumor growth and progression by disrupting cell proliferation and angiogenesis. In this study, we investigated the effect of β-cyclodextrin:everolimus:FGF-7 inclusion complex (Complex) on Caco-2 cell migration, cell motility and colony formation. In addition, we examined the inhibitory effect of the Complex on the circulating proteins; Gal-3 and FGF-7. Swiss Target Prediction concluded that Gal-3 and FGF are possible targets for β-CD. Results of the chemotaxis cell migration assay on Caco-2 cell line revealed that the Complex has higher reduction in cell migration (78.3%) compared to everolimus (EV) alone (58.4%) which is possibly due to the synergistic effect of these molecules when used as a combined treatment. Moreover, the Complex significantly decreased the cell motility in cell scratch assay, less than 10% recovery compared to the control which has ~ 45% recovery. The Complex inhibited colony formation by ~ 75% compared to the control. Moreover, the Complex has the ability to inhibit Gal-3 with minimum inhibitory concentration of 33.46 and 41 for β-CD and EV, respectively. Additionally, β-CD and β-CD:EV were able to bind to FGF-7 and decreased the level of FGF-7 more than 80% in cell supernatant. This confirms Swiss Target Prediction result that predicted β-CD could target FGF. These findings advance the understanding of the biological effects of the Complex which reduced cell migration, cell motility and colony formation and it is possibly due to inhibiting circulating proteins such as; Gal-3 and FGF-7.


The Route to 'Chemobrain' - Computational probing of neuronal LTP pathway.

  • Ammad Fahim‎ et al.
  • Scientific reports‎
  • 2019‎

Chemotherapy causes deleterious side effects during the course of cancer management. The toxic effects may be extended to CNS chronically resulting in altered cognitive function like learning and memory. The present study follows a computational assessment of 64 chemotherapeutic drugs for their off-target interactions against the major proteins involved in neuronal long term potentiation pathway. The cancer chemo-drugs were subjected to induced fit docking followed by scoring alignment and drug-targets interaction analysis. The results were further probed by electrostatic potential computation and ligand binding affinity prediction of the top complexes. The study identified novel off-target interactions by Dactinomycin, Temsirolimus, and Everolimus against NMDA, AMPA, PKA and ERK2, while Irinotecan, Bromocriptine and Dasatinib were top interacting drugs for CaMKII. This study presents with basic foundational knowledge regarding potential chemotherapeutic interference in LTP pathway which may modulate neurotransmission and synaptic plasticity in patient receiving these chemotherapies.


Shared mechanism of teratogenicity of anti-angiogenic drugs identified in the chicken embryo model.

  • Shaunna L Beedie‎ et al.
  • Scientific reports‎
  • 2016‎

Angiogenesis, the formation of new blood vessels, is essential for tumor growth, stabilization and progression. Angiogenesis inhibitors are now widely used in the clinic; however, there are relatively few published studies on the mechanism of their presumed teratogenic effects. To address this issue, we screened a variety of angiogenesis inhibitors in developing zebrafish and chicken embryo models to assess for developmental defects and potential teratogenic effects. We confirmed previous reports that sunitinib, sorafenib and TNP-470 are teratogenic and demonstrate that axitinib, pazopanib, vandetanib, and everolimus are also teratogens in these models. A dose response study identified the drugs inhibit HUVEC cell proliferation in vitro, and also target the developing blood vessels of embryos in vivo. This provides further evidence for the potential risk of fetal toxicity when using these drugs in a clinical setting, and emphasizes the importance of the development and maintenance of the vasculature in the embryo. We conclude that angiogenesis inhibitors, regardless of the molecular target, are teratogenic when exposed to chicken embryos.


Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts.

  • Yi-Ching Tang‎ et al.
  • Scientific reports‎
  • 2022‎

Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predicting models from large-scale cancer cell lines to both tumors and patient derived xenografts based on molecular pathways derived from genomic features. We further compute feature importance to identify pathways most important to drug response prediction. We obtained good performance on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers (RMSE = 0.11). Using feature importance, we highlight the association between ER-Golgi trafficking pathway in everolimus sensitivity within breast cancer patients and the role of class II histone deacetylases and interlukine-12 in response to drugs for triple-negative breast cancer. Pathway information support transfer of drug response prediction models from cell lines to tumors and can provide biological interpretation underlying the predictions, serving as a steppingstone towards usage in clinical setting.


DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway.

  • Cheng Du‎ et al.
  • Scientific reports‎
  • 2017‎

DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5) is an ATP-dependent RNA helicase that is overexpressed in various malignancies. Increasing evidence suggests that DDX5 participates in carcinogenesis and cancer progression via promoting cell proliferation and metastasis. However, the functional role of DDX5 in gastric cancer is largely unknown. In this study, we observed that DDX5 was significantly up-regulated in gastric cancer tissues compared with the paired adjacent normal tissues. The expression of DDX5 correlated strongly with Ki67 index and pathological stage of gastric cancer. In vitro and in vivo studies suggested that knockdown of DDX5 inhibited gastric cancer cell proliferation, colony formation and xenografts growth, whereas ectopic expression of DDX5 promoted these cellular functions. Mechanically, DDX5 induced gastric cancer cell growth by activating mTOR/S6K1. Treatment of everolimus, the specific mTOR inhibitor, significantly attenuated DDX5-mediated cell proliferation. Interestingly, the expression of DDX5 and p-mTOR in gastric cancer tissues demonstrated a positive correlation. Taken together, these results revealed a novel role of DDX5 in gastric cancer cell proliferation via the mTOR pathway. Therefore, DDX5 may serve as a therapeutic target in gastric cancer.


miR-4634 augments the anti-tumor effects of RAD001 and associates well with clinical prognosis of non-small cell lung cancer.

  • Sile Liu‎ et al.
  • Scientific reports‎
  • 2020‎

MicroRNA (miRNA) is involved in the physiological and pathological processes of various malignancies. In this study, miRNA microarray analysis showed that miR-4634 levels in A549 cells increased significantly after everolimus (RAD001) treatment. Decreased expression of miR-4634 was also found in non-small-cell lung carcinoma (NSCLC) cell lines and patients' tumors by qPCR. Additionally, a combination of miR-4634 and RAD001 exerted synergistic antitumor efficacy by inhibiting cell proliferation, migration, and colony formation. High expression of miR-4634 was significantly more common in non-cancerous lung tissue than adenocarcinoma or squamous cell carcinoma tissue (72.8%, 45.7%, and 50.9%, respectively; P < 0.001). Furthermore, high expression of miR-4634 was found to be more frequent in patients without lymph node metastasis (P = 0.037) by in-situ hybridization. Importantly, through univariate and multivariate analysis, high miR-4634 expression was associated with better prognosis of NSCLC patients. In conclusion, miR-4634 may act as a tumor suppressor in NSCLC, and to augment the efficacy of RAD001, co-treatment of miR-4634 and RAD001 might be a potential mTOR-targeted cancer therapy strategy for NSCLC patients. High expression of miR-4634 could be an independent good prognostic biomarker for NSCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: