Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 788 papers

Everolimus in heart transplantation: an update.

  • Stephan W Hirt‎ et al.
  • Journal of transplantation‎
  • 2013‎

The evidence base relating to the use of everolimus in heart transplantation has expanded considerably in recent years, providing clinically relevant information regarding its use in clinical practice. Unless there are special considerations to take into account, all de novo heart transplant patients can be regarded as potential candidates for immunosuppression with everolimus and reduced-exposure calcineurin inhibitor therapy. Caution about the use of everolimus immediately after transplantation should be exercised in certain patients with the risk of severe proteinuria, with poor wound healing, or with uncontrolled severe hyperlipidemia. Initiation of everolimus in the early phase aftertransplant is not advisable in patients with severe pretransplant end-organ dysfunction or in patients on a left ventricular assist device beforetransplant who are at high risk of infection or of wound healing complications. The most frequent reason for introducing everolimus in maintenance heart transplant patients is to support minimization or withdrawal of calcineurin inhibitor therapy, for example, due to impaired renal function or malignancy. Due to its potential to inhibit the progression of cardiac allograft vasculopathy and to reduce cytomegalovirus infection, everolimus should be initiated as soon as possible after heart transplantation. Immediate and adequate reduction of CNI exposure is mandatory from the start of everolimus therapy.


Mechanical properties of the everolimus-eluting bioresorbable vascular scaffold compared to the metallic everolimus-eluting stent.

  • Daniel Dalos‎ et al.
  • BMC cardiovascular disorders‎
  • 2016‎

Everolimus-eluting bioresorbable vascular scaffolds (BVS) represent an innovative treatment option for coronary artery disease. Clinical and angiographic results seem promising, however, data on its immediate procedural performance are still scarce. The aim of our study was to assess the mechanical properties of BVS by Optical Coherence Tomography (OCT) in clinical routine.


Combination of Everolimus with Sorafenib for Solid Renal Tumors in Tsc2+/- Mice Is Superior to Everolimus Alone.

  • Jian Yang‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

Tuberous sclerosis (TSC) is an inherited tumor syndrome caused by mutations in TSC1 or TSC2 that lead to aberrant activation of mTOR and development of tumors in multiple organs including the kidneys. The mTOR inhibitors rapamycin and everolimus (rapalogs) have demonstrated clinical efficacy in treating TSC-associated tumors including renal angiomyolipomas. However, tumor responses are usually only partial, and regrowth occurs after drug withdrawal. TSC-associated tumors are highly vascular, and TSC patients with renal angiomyolipomas have elevated levels of circulating vascular endothelial growth factor (VEGF) A and VEGFD. Sorafenib inhibits multiple kinases including VEGF receptors and has been used to treat metastatic epithelioid angiomyolipoma in one case, but formal trials have not been undertaken. In this study, we investigated tumor angiogenesis and the therapeutic efficacy of everolimus in combination with sorafenib for renal tumors in Tsc2+/- mice. We found that these tumors exhibited remarkably variable angiogenesis despite consistent aberrant activation of mTOR and increased expression of HIF1α and VEGFA. Treatment of 11-month-old Tsc2+/- mice for 2 months with a combination of everolimus and sorafenib significantly reduced the number and size of solid renal tumors, whereas everolimus or sorafenib alone did not. These results suggest that inhibition of mTOR and multiple kinases including VEGF receptors using combination therapy could hold promise for the treatment of TSC-associated tumors that have responded inadequately to a rapalog alone.


Everolimus in Invasive Malignant Renal Epithelioid Angiomyolipoma.

  • Gang Guo‎ et al.
  • Frontiers in oncology‎
  • 2020‎

To evaluate the efficacy and safety of everolimus, a mTOR inhibitor, on invasive malignant renal epithelioid angiomyolipoma (EAML).


mTOR inhibitor Everolimus-induced apoptosis in melanoma cells.

  • Dorota Ciołczyk-Wierzbicka‎ et al.
  • Journal of cell communication and signaling‎
  • 2019‎

Melanoma is the most aggressive, therapy-resistant skin cancer. The mammalian target of rapamycin (mTOR), the serine/threonine kinase which integrates both intracellular and extracellular signals, plays a crucial role in coordinating the balance between the growth and death of cells. The object of this study is a comparison of the influence of mTOR inhibitor everolimus in the concentration range between 20 nM and 10 μM, used individually and in combination with selected downstream protein kinases inhibitors: LY294002 (PI3K), U0126 (ERK1/2), AS-703026 (MEK) and MK-2206 (AKT) on the expression of pro-survival proteins: p-Bcl-2 (S70), p-Bcl-2 (T56), Bcl-2, Bcl-xL, Mcl-1, activity of caspase-3, proliferation and induction of apoptosis in melanoma cells. Current results clearly show that the nanomolar concentration of the mTOR inhibitor everolimus in combination with the inhibitor of MAP kinase (AS-703026) or AKT kinase (MK-2206) is effective in inducing apoptosis and reducing proliferation of melanoma cells. The herein research results confirm the hypothesis on the important role of mTOR signaling in cancer progression, and gives hope that implementation of successful combination of its inhibitors will find recognition and application in cancer treatment in the near future.


Everolimus in Anaplastic Thyroid Cancer: A Case Series.

  • Ethan J Harris‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Background: Anaplastic thyroid cancer (ATC) is a very aggressive disease and accounts for over 50% of thyroid-cancer related deaths. mTOR inhibition has shown anti-tumor activity in ATC. We report our experience treating patients with ATC with everolimus off-protocol. Methods: Patients with confirmed ATC and treated with everolimus at DFCI were identified and reviewed retrospectively. NexGen sequencing was performed, and radiologic responses were correlated with mutational profile. Results: Five patients were treated from 2013 to 2016. Three patients had a response, which included one patient who achieved a partial response for 27.9 months, and two patients who had stable disease for 3.7 and 5.9 months, respectively. Genomic analysis was available in two patients and revealed that the partial responder had mutations involving the PI3K/mTOR pathway. Conclusion: Everolimus has anti-tumor activity in ATC, and responses may correlate with mutations involving the PI3K/mTOR pathway. Further studies are warranted.


Comparison of everolimus-eluting and biolimus-eluting coronary stents with everolimus-eluting bioresorbable scaffold: study protocol of the randomized controlled EVERBIO II trial.

  • Diego Arroyo‎ et al.
  • Trials‎
  • 2014‎

Second-generation everolimus-eluting stents (EES) and third generation biolimus-eluting stents (BES) have been shown to be superior to first-generation paclitaxel-eluting stents (PES) and second-generation sirolimus-eluting stents (SES). However, neointimal proliferation and very late stent thrombosis is still an unresolved issue of drug-eluting stent (DES) implantation overall. The Absorb™ (Abbott Vascular, Abbott Park, IL, USA) is the first CE approved DES with a bioresorbable vascular scaffold (BVS) thought to reduce long-term complication rates. The EVERBIO II trial was set up to compare the BVS safety and efficacy with both EES and BES in all patients viable for inclusion.


Cellular effects of everolimus and sirolimus on podocytes.

  • Sandra Müller-Krebs‎ et al.
  • PloS one‎
  • 2013‎

Everolimus (EVL) and Sirolimus (SRL) are potent immunosuppressant agents belonging to the group of mammalian target of rapamycin (mTOR) inhibitors used to prevent transplant rejection. However, some patients develop proteinuria following a switch from a calcineurin inhibitor regimen to mTOR inhibitors. Whether different mTOR inhibitors show similar effects on podocytes is still unknown. To analyze this, human podocytes were incubated with different doses of EVL and SRL. After incubation with EVL or SRL, podocytes revealed a reduced expression of total mTOR. Phosphorylation of p70S6K and Akt was diminished, whereas pAkt expression was more reduced in the SRL group. In both groups actin cytoskeletal reorganization was increased. Synaptopodin and podocin expression was reduced as well as nephrin protein, particularly in the SRL group. NFκB activation and IL-6 levels were lower in EVL and SRL, and even lower in SRL. Apoptosis was more increased in SRL than in the EVL group. Our data suggests that mTOR inhibitors affect podocyte integrity with respect to podocyte proteins, cytoskeleton, inflammation, and apoptosis. Our study is the first to analyze both mTOR inhibitors, EVL and SRL, in parallel in podocytes. Partially, the impact of EVL and SRL on podocytes differs. Nevertheless, it still remains unclear whether these differences are of relevance regarding to proteinuria in transplant patients.


Everolimus rescues multiple cellular defects in laminopathy-patient fibroblasts.

  • Amanda J DuBose‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

LMNA encodes the A-type lamins that are part of the nuclear scaffold. Mutations in LMNA can cause a variety of disorders called laminopathies, including Hutchinson-Gilford progeria syndrome (HGPS), atypical Werner syndrome, and Emery-Dreifuss muscular dystrophy. Previous work has shown that treatment of HGPS cells with the mTOR inhibitor rapamycin or with the rapamycin analog everolimus corrects several of the phenotypes seen at the cellular level-at least in part by increasing autophagy and reducing the amount of progerin, the toxic form of lamin A that is overproduced in HGPS patients. Since other laminopathies also result in production of abnormal and potentially toxic lamin proteins, we hypothesized that everolimus would also be beneficial in those disorders. To test this, we applied everolimus to fibroblast cell lines from six laminopathy patients, each with a different mutation in LMNA Everolimus treatment increased proliferative ability and delayed senescence in all cell lines. In several cell lines, we observed that with treatment, there is a significant improvement in nuclear blebbing, which is a cellular hallmark of HGPS and other lamin disorders. These preclinical results suggest that everolimus might have clinical benefit for multiple laminopathy syndromes.


Everolimus induces Met inactivation by disrupting the FKBP12/Met complex.

  • Lucia Raimondo‎ et al.
  • Oncotarget‎
  • 2016‎

Inhibition of the mechanistic target of rapamycin (mTOR) is a promising treatment strategy for several cancer types. Rapamycin derivatives such as everolimus are allosteric mTOR inhibitors acting through interaction with the intracellular immunophilin FKBP12, a prolyl isomerase with different cellular functions. Although mTOR inhibitors have significantly improved survival of different cancer patients, resistance and lack of predictive factors of response remain unsolved issues. To elucidate the mechanisms of resistance to everolimus, we evaluated Met activation in everolimus-sensitive/resistant human cancer cells, in vitro and in vivo. Biochemical and computational analyses were performed. Everolimus-resistant cells were xenografted into mice (10/group) and studied for their response to everolimus and Met inhibitors. The statistical significance of the in vitro results was evaluated by Student's t test.Everolimus reduced Met phosphorylation in everolimus-sensitive cells. This event was mediated by the formation of a Met-FKBP12 complex, which in turn is disrupted by everolimus. Aberrant Met activation in everolimus-resistant cells and overexpression of wild-type/mutant Met caused everolimus resistance. Pharmacological inhibition and RNA silencing of Met are effective in condition of everolimus resistance (P<0.01). In mice xenografted with everolimus-resistant cells, the combination of everolimus with the Met inhibitor PHA665752 reduced tumor growth and induced a statistically significant survival advantage (combination vs control P=0.0005).FKBP12 binding is required for full Met activation and everolimus can inhibit Met. Persistent Met activation might sustain everolimus resistance. These results identify a novel everolimus mechanism of action and suggest the development of clinical strategies based on Met inhibitors in everolimus-resistant cancers.


Everolimus and Malignancy after Solid Organ Transplantation: A Clinical Update.

  • Hallvard Holdaas‎ et al.
  • Journal of transplantation‎
  • 2016‎

Malignancy after solid organ transplantation remains a major cause of posttransplant mortality. The mammalian target of rapamycin (mTOR) inhibitor class of immunosuppressants exerts various antioncogenic effects, and the mTOR inhibitor everolimus is licensed for the treatment of several solid cancers. In kidney transplantation, evidence from registry studies indicates a lower rate of de novo malignancy under mTOR inhibition, with some potentially supportive data from randomized trials of everolimus. Case reports and small single-center series have suggested that switch to everolimus may be beneficial following diagnosis of posttransplant malignancy, particularly for Kaposi's sarcoma and nonmelanoma skin cancer, but prospective studies are lacking. A systematic review has shown mTOR inhibition to be associated with a significantly lower rate of hepatocellular carcinoma (HCC) recurrence versus standard calcineurin inhibitor therapy. One meta-analysis has concluded that patients with nontransplant HCC experience a low but significant survival benefit under everolimus monotherapy, so far unconfirmed in a transplant population. Data are limited in heart transplantation, although observational data and case reports have indicated that introduction of everolimus is helpful in reducing the recurrence of skin cancers. Overall, it can be concluded that, in certain settings, everolimus appears a promising option to lessen the toll of posttransplant malignancy.


Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer.

  • Hui Guo‎ et al.
  • Oncotarget‎
  • 2016‎

Everolimus inhibits mTOR kinase activity and its downstream targets by acting on mTORC1 and has anti-tumorigenic activity in ovarian cancer. Clinical and epidemiologic data find that obesity is associated with worse outcomes in ovarian cancer. In addition, obesity leads to hyperactivation of the mTOR pathway in epithelial tissues, suggesting that mTOR inhibitors may be a logical choice for treatment in obesity-driven cancers. However, it remains unclear if obesity impacts the effect of everolimus on tumor growth in ovarian cancer. The present study was aimed at evaluating the effects of everolimus on cytotoxicity, cell metabolism, apoptosis, cell cycle, cell stress and invasion in human ovarian cancer cells. A genetically engineered mouse model of serous ovarian cancer fed a high fat diet or low fat diet allowed further investigation into the inter-relationship between everolimus and obesity in vivo. Everolimus significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, reduced invasion and caused cellular stress via inhibition of mTOR pathways in vitro. Hypoglycemic conditions enhanced the sensitivity of cells to everolimus through the disruption of glycolysis. Moreover, everolimus was found to inhibit ovarian tumor growth in both obese and lean mice. This reduction coincided with a decrease in expression of Ki-67 and phosphorylated-S6, as well as an increase in cleaved caspase 3 and phosphorylated-AKT. Metabolite profiling revealed that everolimus was able to alter tumor metabolism through different metabolic pathways in the obese and lean mice. Our findings support that everolimus may be a promising therapeutic agent for obesity-driven ovarian cancers.


Metformin and Everolimus: A Promising Combination for Neuroendocrine Tumors Treatment.

  • Eleonora Vitali‎ et al.
  • Cancers‎
  • 2020‎

Treatment options for neuroendocrine tumors (NETs) are rarely curative, as NETs frequently show resistance to medical therapy. The use of everolimus, an mTOR inhibitor, is limited by the development of resistance, probably due to the activation of Akt signaling. In this context, the antidiabetic drug metformin is able to inhibit mTOR, providing a rationale for the use of metformin and everolimus in combination.


PAK4-NAMPT Dual Inhibition Sensitizes Pancreatic Neuroendocrine Tumors to Everolimus.

  • Gabriel B Mpilla‎ et al.
  • Molecular cancer therapeutics‎
  • 2021‎

Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed β-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.


Everolimus accelerates Erastin and RSL3-induced ferroptosis in renal cell carcinoma.

  • Wang Yangyun‎ et al.
  • Gene‎
  • 2022‎

Renal cell carcinoma (RCC) is a common type of urological cancer and is often diagnosed at an advanced stage. Everolimus, an inhibitor of mammalian target of rapamycin (mTOR), is used as second-line therapy for sorafenib- or sunitinib-refractory metastatic RCC. However, the clinical benefits of Everolimus are often hampered by drug resistance. Ferroptosis is a novel form of regulated cell death that has recently been implicated in the development and therapeutic responses to different cancers. RSL3 ((1S,3R)-RSL3) and Erastin are two experimental compounds that can induce ferroptosis. In the present study, we evaluated the anti-tumor effects of Everolimus in combination with RSL3 or Erastin in RCC. Everolimus and RSL3/Erastin could synergistically inhibit the viability and induce ferroptosis in RCC cells. Mechanistically, the inhibition of the mTOR-4EBP1 axis was found to be essential for the synergistic effects of Everolimus and RSL3/Erastin. Moreover, the forced expression of GPX4 abrogated ferroptosis induced by the combined treatment of Everolimus and RSL3/Erastin. Taken together, these results demonstrated that Everolimus in combination with RSL3/Erastin is a promising therapeutic option for RCC treatment and it may also help to overcome the limitation in clinical applicability of Everolimus.


Acquired resistance to everolimus in aromatase inhibitor-resistant breast cancer.

  • Mariko Kimura‎ et al.
  • Oncotarget‎
  • 2018‎

We previously reported the establishment of several types of long-term estrogen-depleted-resistant (EDR) cell lines from MCF-7 breast cancer cells. Type 1 EDR cells exhibited the best-studied mechanism of aromatase inhibitor (AI) resistance, in which estrogen receptor (ER) expression remained positive and PI3K signaling was upregulated. Type 2 EDR cells showed reduced ER activity and upregulated JNK-related signaling. The mTOR inhibitor everolimus reduced growth in cells similar to Type 1 EDR cells. The present study generated everolimus-resistant (EvR) cells from Types 1 and 2 EDR cells following long-term exposure to everolimus in vitro. These EvR cells modeled resistance to AI and everolimus combination therapies following first-line AI treatment failure. In Type 1 EvR cells, everolimus resistance was dependent on MAPK signaling; single agents were not effective, but hormonal therapy combined with a kinase inhibitor effectively reduced cell growth. In Type 2 EvR cells, ER expression remained negative and a JNK inhibitor was ineffective, but a Src inhibitor reduced cell growth. The mechanism of acquired everolimus resistance appears to vary depending on the mechanism of AI resistance. Strategies targeting resistant tumors should be tailored based on the resistance mechanisms, as these mechanisms impact therapeutic efficacy.


Everolimus ameliorates Helicobacter pylori infection-induced inflammation in gastric epithelial cells.

  • Jinglei Liu‎ et al.
  • Bioengineered‎
  • 2022‎

Helicobacter pylori (H.pylori) infection caused by gastric mucosal inflammation plays a pivotal role in the progression of gastric diseases. The recruitment and attachment of monocytes to the gastric mucosal epithelium are a major event in the early stages of H. pylori-associated gastric diseases. Everolimus is a mechanistic/mammalian target of rapamycin (mTOR) inhibitor used to prevent tumor growth by inhibiting the PI3K signaling pathway. Here, we examined the pharmacological role of Everolimus against H.pylori-induced damage in gastric epithelial cells. Firstly, we found that Everolimus ameliorated H.pylori-induced oxidative stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA). Secondly, Everolimus significantly reduced the expressions of the pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and IL-8. Moreover, it decreased the production of the pro-inflammatory chemokines C-X-C motif ligand 1 (CXCL1) and macrophage chemoattractant protein-1 (MCP-1). Importantly, Everolimus suppressed the induction of the adhesion molecule intracellular adhesion molecule-1 (ICAM-1) and the attachment of THP-1 monocytes to gastric epithelial AGS cells. Our data also shows that Everolimus inhibited the activation of the NF-κB signaling pathway. Therefore, we conclude that Everolimus could protect gastric epithelial cells by mitigating H.pylori-induced inflammatory response and the attachment of monocytes to epithelial cells.


Targeting the mTOR Complex by Everolimus in NRAS Mutant Neuroblastoma.

  • Michael K Kiessling‎ et al.
  • PloS one‎
  • 2016‎

High-risk neuroblastoma remains lethal in about 50% of patients despite multimodal treatment. Recent attempts to identify molecular targets for specific therapies have shown that Neuroblastoma RAS (NRAS) is significantly mutated in a small number of patients. However, few inhibitors for the potential treatment for NRAS mutant neuroblastoma have been investigated so far. In this in-vitro study, we show that MEK inhibitors AZD6244, MEK162 and PD0325901 block cell growth in NRAS mutant neuroblastoma cell lines but not in NRAS wild-type cell lines. Several studies show that mutant NRAS leads to PI3K pathway activation and combined inhibitors of PI3K/mTOR effectively block cell growth. However, we observed the combination of MEK inhibitors with PI3K or AKT inhibitors did not show synergestic effects on cell growth. Thus, we tested single mTOR inhibitors Everolimus and AZD8055. Interestingly, Everolimus and AZD8055 alone were sufficient to block cell growth in NRAS mutant cell lines but not in wild-type cell lines. We found that Everolimus alone induced apoptosis in NRAS mutant neuroblastoma. Furthermore, the combination of mTOR and MEK inhibitors resulted in synergistic growth inhibition. Taken together, our results show that NRAS mutant neuroblastoma can be targeted by clinically available Everolimus alone or in combination with MEK inhibitors which could impact future clinical studies.


Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression.

  • Stefanie Jeruschke‎ et al.
  • PloS one‎
  • 2015‎

Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte actin cytoskeleton. In contrast, a potential stabilization of microtubules by everolimus has not been studied so far.


Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib.

  • Maria Serova‎ et al.
  • Oncotarget‎
  • 2016‎

Angiogenesis is hallmark of clear cell renal cell carcinogenesis. Anti-angiogenic therapies have been successful in improving disease outcome; however, most patients treated with anti-angiogenic agents will eventually progress. In this study we report that clear cell renal cell carcinoma was associated with vasculogenic mimicry in both mice and human with tumor cells expressing endothelial markers in the vicinity of tumor vessels. We show that vasculogenic mimicry was efficiently targeted by sunitinib but eventually associated with tumor resistance and a more aggressive phenotype both in vitro and in vivo. Re-challenging these resistant tumors in mice, we showed that second-line treatment with everolimus particularly affected vasculogenic mimicry and tumor cell differentiation compared to sorafenib and axitinib. Finally, our results highlighted the phenotypic and genotypic changes at the tumor cell and microenvironment levels during sunitinib response and progression and the subsequent improvement second-line therapies bring to the current renal cell carcinoma treatment paradigm.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: