Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Complex Dependence of Escherichia coli-based Cell-Free Expression on Sonication Energy During Lysis.

  • Fernanda Piorino‎ et al.
  • ACS synthetic biology‎
  • 2023‎

Cell lysis─by sonication or bead beating, for example─is a key step in preparing extracts for cell-free expression systems. To create high protein-production capacity extracts, standard practice is to lyse cells sufficiently to thoroughly disrupt the membrane and thus extract expression machinery but without degrading that machinery. Here, we investigate the impact of different sonication energy inputs on the protein-production capacity of Escherichia coli extracts. While the existence of operator-specific optimal sonication energy inputs is widely known, our findings show that the sonication energy input that yields maximal protein output from a given expression template may depend on plasmid concentration, transcriptional and translational features (e.g., promoter), and other expression vector components (e.g., origin of replication). These results indicate that sonication protocols cannot be standardized to a single optimum, suggest strategies for improving protein yields, and more broadly highlight the need for better metrics and protocols for characterizing cell extracts.


Plasmid Crosstalk in Cell-Free Expression Systems.

  • Fernanda Piorino‎ et al.
  • ACS synthetic biology‎
  • 2023‎

Although cell-free protein expression has been widely used for the synthesis of single proteins, cell-free synthetic biology has rapidly expanded to new, more complex applications. One such application is the prototyping or implementation of complex genetic networks involving the expression of multiple proteins at precise ratios, often from different plasmids. However, expression of multiple proteins from multiple plasmids may inadvertently result in unexpected, off-target changes to the levels of the proteins being expressed, a phenomenon termed plasmid crosstalk. Here, we show that the effects of plasmid crosstalk─even at the qualitative level of increases vs decreases in protein expression─depend on the concentration of plasmids in the reaction and the type of transcriptional machinery involved in the expression. This crosstalk can have a significant impact on genetic circuitry function and even interpretation of simple experimental results and thus should be taken into consideration during the development of cell-free applications.


A Cell-Free Biosensor for Assessment of Hyperhomocysteinemia.

  • Fernanda Piorino‎ et al.
  • ACS synthetic biology‎
  • 2023‎

Hyperhomocysteinemia─a condition characterized by elevated levels of homocysteine in the blood─is associated with multiple health conditions including folate deficiency and birth defects, but there are no convenient, low-cost methods to measure homocysteine in plasma. A cell-free biosensor that harnesses the native homocysteine sensing machinery of Escherichia coli bacteria could satisfy the need for a detection platform with these characteristics. Here, we describe our efforts to engineer a cell-free biosensor for point-of-care, low-cost assessment of homocysteine status. This biosensor can detect physiologically relevant concentrations of homocysteine in plasma with a colorimetric output visible to the naked eye in under 1.5 h, making it a fast, convenient tool for point-of-use diagnosis and monitoring of hyperhomocysteinemia and related health conditions.


Efficient CRISPR/Cas12a-Based Genome-Editing Toolbox for Metabolic Engineering in Methanococcus maripaludis.

  • Jichen Bao‎ et al.
  • ACS synthetic biology‎
  • 2022‎

The rapid-growing and genetically tractable methanogen Methanococcus maripaludis is a promising host organism for the biotechnological conversion of carbon dioxide and renewable hydrogen to fuels and value-added products. Expansion of its product scope through metabolic engineering necessitates reliable and efficient genetic tools, particularly for genome edits that affect the primary metabolism and cell growth. Here, we have designed a genome-editing toolbox by utilizing Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in combination with the homology-directed repair machinery endogenously present in M. maripaludis. This toolbox can delete target genes with a success rate of up to 95%, despite the hyperpolyploidy of M. maripaludis. For the purpose of demonstrating a large deletion, the M. maripaludis flagellum operon (∼8.9 kbp) was replaced by the Escherichia coli β-glucuronidase gene. To facilitate metabolic engineering and flux balancing in M. maripaludis, the relative strength of 15 different promoters was quantified in the presence of two common growth substrates, either formate or carbon dioxide and hydrogen. This CRISPR/LbCas12a toolbox can be regarded as a reliable and quick method for genome editing in a methanogen.


Decoupling Growth and Production by Removing the Origin of Replication from a Bacterial Chromosome.

  • Marje Kasari‎ et al.
  • ACS synthetic biology‎
  • 2022‎

Efficient production of biochemicals and proteins in cell factories frequently benefits from a two-stage bioprocess in which growth and production phases are decoupled. Here, we describe a novel growth switch based on the permanent removal of the origin of replication (oriC) from the Escherichia coli chromosome. Without oriC, cells cannot initiate a new round of replication, and they stop growing while their metabolism remains active. Our system relies on a serine recombinase from bacteriophage phiC31 whose expression is controlled by the temperature-sensitive cI857 repressor from phage lambda. The reporter protein expression in switched cells continues after cessation of growth, leading to protein levels up to 5 times higher compared to nonswitching cells. Switching induces a unique physiological state that is different from both normal exponential and stationary phases. The switched cells remain in this state even when not growing, retain their protein synthesis capacity, and do not induce proteins associated with the stationary phase. Our switcher technology is potentially useful for a range of products and applicable in many bacterial species for decoupling growth and production.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: