Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Complex Dependence of Escherichia coli-based Cell-Free Expression on Sonication Energy During Lysis.

ACS synthetic biology | 2023

Cell lysis─by sonication or bead beating, for example─is a key step in preparing extracts for cell-free expression systems. To create high protein-production capacity extracts, standard practice is to lyse cells sufficiently to thoroughly disrupt the membrane and thus extract expression machinery but without degrading that machinery. Here, we investigate the impact of different sonication energy inputs on the protein-production capacity of Escherichia coli extracts. While the existence of operator-specific optimal sonication energy inputs is widely known, our findings show that the sonication energy input that yields maximal protein output from a given expression template may depend on plasmid concentration, transcriptional and translational features (e.g., promoter), and other expression vector components (e.g., origin of replication). These results indicate that sonication protocols cannot be standardized to a single optimum, suggest strategies for improving protein yields, and more broadly highlight the need for better metrics and protocols for characterizing cell extracts.

Pubmed ID: 37725792 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIBIB NIH HHS, United States
    Id: R01 EB022592
  • Agency: NIBIB NIH HHS, United States
    Id: R01 EB034301

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions

New England Biolabs (tool)

RRID:SCR_013517

An Antibody supplier

View all literature mentions