2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,720 papers

Ecology of the digital world of Wikipedia.

  • Fumiko Ogushi‎ et al.
  • Scientific reports‎
  • 2021‎

Wikipedia, a paradigmatic example of online knowledge space is organized in a collaborative, bottom-up way with voluntary contributions, yet it maintains a level of reliability comparable to that of traditional encyclopedias. The lack of selected professional writers and editors makes the judgement about quality and trustworthiness of the articles a real challenge. Here we show that a self-consistent metrics for the network defined by the edit records captures well the character of editors' activity and the articles' level of complexity. Using our metrics, one can better identify the human-labeled high-quality articles, e.g., "featured" ones, and differentiate them from the popular and controversial articles. Furthermore, the dynamics of the editor-article system is also well captured by the metrics, revealing the evolutionary pathways of articles and diverse roles of editors. We demonstrate that the collective effort of the editors indeed drives to the direction of article improvement.


Anopheles ecology, genetics and malaria transmission in northern Cambodia.

  • Amélie Vantaux‎ et al.
  • Scientific reports‎
  • 2021‎

In the Greater Mekong Subregion, malaria cases have significantly decreased but little is known about the vectors or mechanisms responsible for residual malaria transmission. We analysed a total of 3920 Anopheles mosquitoes collected during the rainy and dry seasons from four ecological settings in Cambodia (villages, forested areas near villages, rubber tree plantations and forest sites). Using odor-baited traps, 81% of the total samples across all sites were collected in cow baited traps, although 67% of the samples attracted by human baited traps were collected in forest sites. Overall, 20% of collected Anopheles were active during the day, with increased day biting during the dry season. 3131 samples were identified morphologically as 14 different species, and a subset was also identified by DNA amplicon sequencing allowing determination of 29 Anopheles species. The investigation of well characterized insecticide mutations (ace-1, kdr, and rdl genes) indicated that individuals carried mutations associated with response to all the different classes of insecticides. There also appeared to be a non-random association between mosquito species and insecticide resistance with Anopheles peditaeniatus exhibiting nearly fixed mutations. Molecular screening for Plasmodium sp. presence indicated that 3.6% of collected Anopheles were positive, most for P. vivax followed by P. falciparum. These results highlight some of the key mechanisms driving residual human malaria transmission in Cambodia, and illustrate the importance of diverse collection methods, sites and seasons to avoid bias and better characterize Anopheles mosquito ecology in Southeast Asia.


Global spatial ecology of three closely-related gadfly petrels.

  • Raül Ramos‎ et al.
  • Scientific reports‎
  • 2016‎

The conservation status and taxonomy of the three gadfly petrels that breed in Macaronesia is still discussed partly due to the scarce information on their spatial ecology. Using geolocator and capture-mark-recapture data, we examined phenology, natal philopatry and breeding-site fidelity, year-round distribution, habitat usage and at-sea activity of the three closely-related gadfly petrels that breed in Macaronesia: Zino's petrel Pterodroma madeira, Desertas petrel P. deserta and Cape Verde petrel P. feae. All P. feae remained around the breeding area during their non-breeding season, whereas P. madeira and P. deserta dispersed far from their colony, migrating either to the Cape Verde region, further south to equatorial waters in the central Atlantic, or to the Brazil Current. The three taxa displayed a clear allochrony in timing of breeding. Habitat modelling and at-sea activity patterns highlighted similar environmental preferences and foraging behaviours of the three taxa. Finally, no chick or adult was recaptured away from its natal site and survival estimates were relatively high at all study sites, indicating strong philopatry and breeding-site fidelity for the three taxa. The combination of high philopatry, marked breeding asynchrony and substantial spatio-temporal segregation of their year-round distribution suggest very limited gene flow among the three taxa.


Abrupt rise of new machine ecology beyond human response time.

  • Neil Johnson‎ et al.
  • Scientific reports‎
  • 2013‎

Society's techno-social systems are becoming ever faster and more computer-orientated. However, far from simply generating faster versions of existing behaviour, we show that this speed-up can generate a new behavioural regime as humans lose the ability to intervene in real time. Analyzing millisecond-scale data for the world's largest and most powerful techno-social system, the global financial market, we uncover an abrupt transition to a new all-machine phase characterized by large numbers of subsecond extreme events. The proliferation of these subsecond events shows an intriguing correlation with the onset of the system-wide financial collapse in 2008. Our findings are consistent with an emerging ecology of competitive machines featuring 'crowds' of predatory algorithms, and highlight the need for a new scientific theory of subsecond financial phenomena.


Contribution to the ecology of the Italian hare (Lepus corsicanus).

  • Maria Buglione‎ et al.
  • Scientific reports‎
  • 2020‎

The Italian hare (Lepus corsicanus) is endemic to Central-Southern Italy and Sicily, classified as vulnerable due to habitat alterations, low density and fragmented populations and ecological competition with the sympatric European hare (Lepus europaeus). Despite this status, only few and local studies have explored its ecological features. We provided some key traits of the ecological niche of the Italian hare as well as its potential distribution in the Italian peninsula. All data derived from genetically validated presences. We generated a habitat suitability model using maximum entropy distribution model for the Italian hare and its main competitor, the European hare. The dietary habits were obtained for the Italian hare with DNA metabarcoding and High-Throughput Sequencing on faecal pellets. The most relevant environmental variables affecting the potential distribution of the Italian hare are shared with the European hare, suggesting a potential competition. The variation in the observed altitudinal distribution is statistically significant between the two species.The diet of the Italian hare all year around includes 344 plant taxa accounted by 62 families. The Fagaceae, Fabaceae, Poaceae, Rosaceae and Solanaceae (counts > 20,000) represented the 90.22% of the total diet. Fabaceae (60.70%) and Fagaceae (67.47%) were the most abundant plant items occurring in the Spring/Summer and Autumn/Winter diets, respectively. The Spring/Summer diet showed richness (N = 266) and diversity index values (Shannon: 2.329, Evenness: 0.03858, Equitability: 0.4169) higher than the Autumn/Winter diet (N = 199, Shannon: 1.818, Evenness: 0.03096, Equitability: 0.3435). Our contribution adds important information to broaden the knowledge on the environmental (spatial and trophic) requirements of the Italian hare, representing effective support for fitting management actions in conservation planning.


Biofluorescence in Catsharks (Scyliorhinidae): Fundamental Description and Relevance for Elasmobranch Visual Ecology.

  • David F Gruber‎ et al.
  • Scientific reports‎
  • 2016‎

Biofluorescence has recently been found to be widespread in marine fishes, including sharks. Catsharks, such as the Swell Shark (Cephaloscyllium ventriosum) from the eastern Pacific and the Chain Catshark (Scyliorhinus retifer) from the western Atlantic, are known to exhibit bright green fluorescence. We examined the spectral sensitivity and visual characteristics of these reclusive sharks, while also considering the fluorescent properties of their skin. Spectral absorbance of the photoreceptor cells in these sharks revealed the presence of a single visual pigment in each species. Cephaloscyllium ventriosum exhibited a maximum absorbance of 484 ± 3 nm and an absorbance range at half maximum (λ1/2max) of 440-540 nm, whereas for S. retifer maximum absorbance was 488 ± 3 nm with the same absorbance range. Using the photoreceptor properties derived here, a "shark eye" camera was designed and developed that yielded contrast information on areas where fluorescence is anatomically distributed on the shark, as seen from other sharks' eyes of these two species. Phylogenetic investigations indicate that biofluorescence has evolved at least three times in cartilaginous fishes. The repeated evolution of biofluorescence in elasmobranchs, coupled with a visual adaptation to detect it; and evidence that biofluorescence creates greater luminosity contrast with the surrounding background, highlights the potential importance of biofluorescence in elasmobranch behavior and biology.


Investigating the viral ecology of global bee communities with high-throughput metagenomics.

  • David A Galbraith‎ et al.
  • Scientific reports‎
  • 2018‎

Bee viral ecology is a fascinating emerging area of research: viruses exert a range of effects on their hosts, exacerbate impacts of other environmental stressors, and, importantly, are readily shared across multiple bee species in a community. However, our understanding of bee viral communities is limited, as it is primarily derived from studies of North American and European Apis mellifera populations. Here, we examined viruses in populations of A. mellifera and 11 other bee species from 9 countries, across 4 continents and Oceania. We developed a novel pipeline to rapidly and inexpensively screen for bee viruses. This pipeline includes purification of encapsulated RNA/DNA viruses, sequence-independent amplification, high throughput sequencing, integrated assembly of contigs, and filtering to identify contigs specifically corresponding to viral sequences. We identified sequences for (+)ssRNA, (-)ssRNA, dsRNA, and ssDNA viruses. Overall, we found 127 contigs corresponding to novel viruses (i.e. previously not observed in bees), with 27 represented by >0.1% of the reads in a given sample, and 7 contained an RdRp or replicase sequence which could be used for robust phylogenetic analysis. This study provides a sequence-independent pipeline for viral metagenomics analysis, and greatly expands our understanding of the diversity of viruses found in bee communities.


Seed germination ecology of Bidens pilosa and its implications for weed management.

  • Bhagirath Singh Chauhan‎ et al.
  • Scientific reports‎
  • 2019‎

It is now widely recognized that Bidens pilosa has become a problematic broadleaf weed in many ecosystems across the world and, particularly in the light of recent climate change conditions, closer management strategies are required to curtail its impact on agricultural cropping. In this investigation, experiments were conducted to evaluate the effect of environmental factors on the germination and emergence of B. pilosa, and also on the response of this weed to commonly available post-emergence herbicides in Australia. The environmental factors of particular interest to this current work were the effect of light and temperature, salinity, burial depth and moisture on B. pilosa since these are key management issues in Australian agriculture. In addition, the effects of a number of commonly used herbicides were examined, because of concerns regarding emerging herbicide resistance. In the tested light/dark regimes, germination was found to be higher at fluctuating day/night temperatures of 25/15 °C and 30/20 °C (92-93%) than at 35/25 °C (79%), whilst across the different temperature ranges, germination was higher in the light/dark regime (79-93%) than in complete darkness (22-38%). The standard five-minute temperature pretreatment required for 50% inhibition of maximum germination was found to be 160 °C, and it was further shown that no seeds germinated at temperatures higher than 240 °C. With regard to salinity, some B. pilosa seeds germinated (3%) in 200 mM sodium chloride (NaCl) but all failed to germinate at 250 mM NaCl. Germination declined from 89% to 2% as the external osmotic potential decreased from 0 to -0.6 MPa, and germination ceased at -0.8 MPa. Seeding emergence of B. pilosa was maximum (71%) for seeds placed on the soil surface and it was found that no seedlings emerged from a depth of 8 cm or greater. A depth of 3.75 cm was required to inhibit the seeds to 50% of the maximum emergence. In this study, application of glufosinate, glyphosate and paraquat provided commercially acceptable control levels (generally accepted as >90%) when applied at the four-leaf stage of B. pilosa. However, none of the herbicide treatments involved in this study provided this level of control when applied at the six-leaf stage. In summary, B. pilosa germination has been clearly shown to be stimulated by light and thus its emergence was greatest from the soil surface. This suggests that infestation from this weed will remain as a problem in no-till conservation agriculture systems, the use of which is increasing now throughout the world. It is intended that information generated from this study be used to develop more effective integrated management programs for B. pilosa and similar weeds in commercial agricultural environments which are tending toward conservation approaches.


Divergent strategies in cranial biomechanics and feeding ecology of the ankylosaurian dinosaurs.

  • Antonio Ballell‎ et al.
  • Scientific reports‎
  • 2023‎

Ankylosaurs were important megaherbivores of Jurassic and Cretaceous ecosystems. Their distinctive craniodental anatomy and mechanics differentiated them from coexisting hadrosaurs and ceratopsians, and morphological evidence suggests dietary niche partitioning between sympatric ankylosaurids and nodosaurids. Here, we investigate the skull biomechanics of ankylosaurs relative to feeding function. First, we compare feeding functional performance between nodosaurids and ankylosaurids applying finite element analysis and lever mechanics to the skulls of Panoplosaurus mirus (Nodosauridae) and Euoplocephalus tutus (Ankylosauridae). We also compare jaw performance across a wider sample of ankylosaurs through lever mechanics and phylogenetic comparative methods. Mandibular stress levels are higher in Euoplocephalus, supporting the view that Panoplosaurus consumed tougher foodstuffs. Bite force and mechanical advantage (MA) estimates indicate that Panoplosaurus had a relatively more forceful and efficient bite than Euoplocephalus. There is little support for a role of the secondary palate in resisting feeding loads in the two ankylosaur clades. Several ankylosaurs converged on similar jaw mechanics, while some nodosaurids specialised towards high MA and some ankylosaurids evolved low MA jaws. Our study supports the hypothesis that ankylosaurs partitioned dietary niches in Late Cretaceous ecosystems and reveals that the two main ankylosaur clades evolved divergent evolutionary pathways in skull biomechanics and feeding habits.


Biological and environmental drivers of trophic ecology in marine fishes - a global perspective.

  • B Hayden‎ et al.
  • Scientific reports‎
  • 2019‎

Dietary niche width and trophic position are key functional traits describing a consumer's trophic ecology and the role it plays in a community. However, our understanding of the environmental and biological drivers of both traits is predominantly derived from theory or geographically restricted studies and lacks a broad empirical evaluation. We calculated the dietary niche width and trophic position of 2,938 marine fishes and examined the relationship of both traits with species' maximum length and geographic range, in addition to species richness, productivity, seasonality and water temperature within their geographic range. We used Generalized Additive Models to assess these relationships across seven distinct marine habitat types. Fishes in reef associated habitats typically had a smaller dietary niche width and foraged at a lower trophic position than those in pelagic or demersal regions. Species richness was negatively related to dietary niche width in each habitat. Species range and maximum length both displayed positive associations with dietary niche width. Trophic position was primarily related to species maximum length but also displayed a non-linear relationship with dietary niche width, whereby species of an intermediate trophic position (3-4) had a higher dietary niche width than obligate herbivores or piscivores. Our results indicate that trophic ecology of fishes is driven by several interlinked factors. Although size is a strong predictor of trophic position and the diversity of preys a species can consume, dietary niche width of fishes is also related to prey and competitor richness suggesting that, at a local level, consumer trophic ecology is determined by a trade-off between environmental drivers and biological traits.


Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon.

  • Gael Darren Maganga‎ et al.
  • Scientific reports‎
  • 2020‎

Little research on coronaviruses has been conducted on wild animals in Africa. Here, we screened a wide range of wild animals collected in six provinces and five caves of Gabon between 2009 and 2015. We collected a total of 1867 animal samples (cave-dwelling bats, rodents, non-human primates and other wild animals). We explored the diversity of CoVs and determined the factors driving the infection of CoVs in wild animals. Based on a nested reverse transcription-polymerase chain reaction, only bats, belonging to the Hipposideros gigas (4/156), Hipposideros cf. ruber (13/262) and Miniopterus inflatus (1/249) species, were found infected with CoVs. We identified alphacoronaviruses in H. gigas and H. cf. ruber and betacoronaviruses in H. gigas. All Alphacoronavirus sequences grouped with Human coronavirus 229E (HCoV-229E). Ecological analyses revealed that CoV infection was significantly found in July and October in H. gigas and in October and November in H. cf ruber. The prevalence in the Faucon cave was significantly higher. Our findings suggest that insectivorous bats harbor potentially zoonotic CoVs; highlight a probable seasonality of the infection in cave-dwelling bats from the North-East of Gabon and pointed to an association between the disturbance of the bats' habitat by human activities and CoV infection.


Using energy budgets to combine ecology and toxicology in a mammalian sentinel species.

  • Jean-Pierre W Desforges‎ et al.
  • Scientific reports‎
  • 2017‎

Process-driven modelling approaches can resolve many of the shortcomings of traditional descriptive and non-mechanistic toxicology. We developed a simple dynamic energy budget (DEB) model for the mink (Mustela vison), a sentinel species in mammalian toxicology, which coupled animal physiology, ecology and toxicology, in order to mechanistically investigate the accumulation and adverse effects of lifelong dietary exposure to persistent environmental toxicants, most notably polychlorinated biphenyls (PCBs). Our novel mammalian DEB model accurately predicted, based on energy allocations to the interconnected metabolic processes of growth, development, maintenance and reproduction, lifelong patterns in mink growth, reproductive performance and dietary accumulation of PCBs as reported in the literature. Our model results were consistent with empirical data from captive and free-ranging studies in mink and other wildlife and suggest that PCB exposure can have significant population-level impacts resulting from targeted effects on fetal toxicity, kit mortality and growth and development. Our approach provides a simple and cross-species framework to explore the mechanistic interactions of physiological processes and ecotoxicology, thus allowing for a deeper understanding and interpretation of stressor-induced adverse effects at all levels of biological organization.


Integrative systematics and ecology of a new deep-sea family of tanaidacean crustaceans.

  • Magdalena Błażewicz‎ et al.
  • Scientific reports‎
  • 2019‎

A new family of paratanaoidean Tanaidacea - Paranarthrurellidae fam. nov. - is erected to accommodate two genera without family classification (Paratanaoidea incertae sedis), namely Armatognathia Kudinova-Pasternak, 1987 and Paranarthrurella Lang, 1971. Seven new species of Paranarthrurella and two of Armatognathia are described from material taken in different deep-sea areas of the Atlantic and Pacific oceans. The type species of Paranarthrurella - P. caudata (Kudinova-Pasternak, 1965) - is redescribed based on the paratype. The genus Cheliasetosatanais Larsen and Araújo-Silva, 2014 originally classified within Colletteidae is synonymised with Paranarthrurella, and Arthrura shiinoi Kudinova-Pasternak, 1973 is transferred to Armatognathia. Amended diagnoses of Armatognathia and Paranarthrurella genera are given. Choosing characters for distinguishing and defining both genera was supported by Principal Component Analysis. Designation of the new family is supported by molecular phylogenetic analysis of COI and 18S datasets. The distribution of all species currently included in the new family was visualised and their bathymetric distribution analysed.


Identification and ecology of alternative insect vectors of 'Candidatus Phytoplasma solani' to grapevine.

  • Fabio Quaglino‎ et al.
  • Scientific reports‎
  • 2019‎

Bois noir, a disease of the grapevine yellows complex, is associated with 'Candidatus Phytoplasma solani' and transmitted to grapevines in open fields by the cixiids Hyalesthes obsoletus and Reptalus panzeri. In vine-growing areas where the population density of these vectors is low within the vineyard, the occurrence of bois noir implies the existence of alternative vectors. The aim of this study was to identify alternative vectors through screening of the Auchenorrhyncha community, phytoplasma typing by stamp gene sequence analyses, and transmission trials. During field activities, conducted in Northern Italy in a vineyard where the bois noir incidence was extremely high, nine potential alternative insect vectors were identified according to high abundance in the vineyard agro-ecosystem, high infection rate, and harbouring phytoplasma strains characterized by stamp gene sequence variants found also in symptomatic grapevines. Transmission trials coupled with molecular analyses showed that at least eight species (Aphrodes makarovi, Dicranotropis hamata, Dictyophara europaea, Euscelis incisus, Euscelidius variegatus, Laodelphax striatella, Philaenus spumarius, and Psammotettix alienus/confinis) are alternative vectors of 'Candidatus Phytoplasma solani' to grapevines. These novel findings highlight that bois noir epidemiology in vineyard agro-ecosystems is more complex than previously known, opening up new perspectives in the disease management.


Seed germination ecology of Alexandra palm (Archontophoenix alexandrae) and its implication on invasiveness.

  • Bin Wen‎
  • Scientific reports‎
  • 2019‎

Biological invasions are occurring worldwide, causing enormous economic and ecological damage. Early detection and prediction of invasiveness are the most effective measures to reduce its damage. The Alexandra palm (Archontophoenix alexandrae) is a prolific seeder and an alien species widely planted in tropical China. To help understand the invasion risks posed by this species, lab and field experiments on seed germination were conducted. Results show that the seeds only germinate within a temperature range of 20-30 °C and are sensitive to desiccation and high temperature, with seedling inhibition at 35 °C and -0.8 MPa. Complete viability loss was observed after desiccation to water content of 0.17-0.21 g/g or heat treatment for 30 minutes at 60 °C and above. However, appropriate habitats such as the rainforest understory, forest gaps, forest edges, and a rubber plantation are present in Xishuangbanna. Seeds are also frequently consumed by animals; therefore, there is a high potential for Alexandra palm to become an invasive species in Xishuangbanna. Currently, the main barrier to invasion in Xishuangbanna is likely to be the need for seed dispersal into suitable moist, partly shaded, habitats. Understanding the requirements for germination of the Alexandra palm can better inform management strategies for the control of this species.


Floccular fossa size is not a reliable proxy of ecology and behaviour in vertebrates.

  • S Ferreira-Cardoso‎ et al.
  • Scientific reports‎
  • 2017‎

The cerebellar floccular and parafloccular lobes are housed in fossae of the periotic region of the skull of different vertebrates. Experimental evidence indicates that the lobes integrate visual and vestibular information and control the vestibulo-ocular reflex, vestibulo-collic reflex, smooth pursuit and gaze holding. Multiple paleoneuroanatomy studies have deduced the behaviour of fossil vertebrates by measuring the floccular fossae (FF). These studies assumed that there are correlations between FF volume and behaviour. However, these assumptions have not been fully tested. Here, we used micro-CT scans of extant mammals (47 species) and birds (59 species) to test six possible morphological-functional associations between FF volume and ecological/behavioural traits of extant animals. Behaviour and ecology do not explain FF volume variability in four out of six variables tested. Two variables with significant results require further empirical testing. Cerebellum plasticity may explain the lack of statistical evidence for the hypotheses tested. Therefore, variation in FF volume seems to be better explained by a combination of factors such as anatomical and phylogenetic evolutionary constraints, and further empirical testing is required.


Population history and ecology, in addition to climate, influence human stature and body proportions.

  • Emma Pomeroy‎ et al.
  • Scientific reports‎
  • 2021‎

Worldwide variation in human stature and limb proportions is widely accepted to reflect thermal adaptation, but the contribution of population history to this variation is unknown. Furthermore, stature and relative lower limb length (LLL) show substantial plastic responses to environmental stressors, e.g., nutrition, pathogen load, which covary with climate. Thus ecogeographic patterns may go beyond temperature-based selection. We analysed global variation in stature, sitting height and absolute and relative LLL using large worldwide samples of published anthropometric data from adult male (n = 571) and female (n = 268) populations in relation to temperature, humidity, and net primary productivity (NPP). Population history was modeled using spatial eigenvector mapping based on geographic distances reflecting the hypothesized pattern for the spread of modern humans out of Africa. Regression models account for ~ 50% of variation in most morphological variables. Population history explains slightly more variation in stature, sitting height and LLL than the environmental/climatic variables. After adjusting for population history, associations between (usually maximum) temperature and LLL are consistent with Allen's "rule" and may drive similar relationships with stature. NPP is a consistent negative predictor of anthropometry, which may reflect the growth-limiting effects of lower environmental resource accessibility (inversely related to NPP) and/or pathogen load.


Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau.

  • Chayan Roy‎ et al.
  • Scientific reports‎
  • 2020‎

Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga's geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga's microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga's geomicrobiology highlights the possibility that the system's kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.


Changing environmental conditions have altered the feeding ecology of two keystone Arctic marine predators.

  • Matthew A Anderson‎ et al.
  • Scientific reports‎
  • 2023‎

Environmental change in the Arctic has impacted the composition and structure of marine food webs. Tracking feeding ecology changes of culturally-valued Arctic char (Salvelinus alpinus) and ringed seals (Pusa hispida) can provide an indication of the ecological significance of climate change in a vulnerable region. We characterized how changes in sea ice conditions, sea surface temperature (SST), and primary productivity affected the feeding ecology of these two keystone species over a 13- and 18-year period, respectively, in northern Labrador, Canada. Arctic char fed consistently on pelagic resources (δ13C) but shifted over time to feeding at a higher trophic level (δ15N) and on more marine/offshore resources (δ34S), which correlated with decreases in chlorophyll a concentration. A reduction in Arctic char condition factor and lipid content was associated with higher trophic position. Ringed seals also shifted to feeding at a higher trophic level, but on more pelagic resources, which was associated with lower SST and higher chlorophyll a concentrations. Years with abnormally high SSTs and reduced sea ice concentrations resulted in large isotopic niche sizes for both species, suggesting abrupt change can result in more variable feeding. Changes in abundance and distribution of species long valued by the Inuit of Labrador could diminish food security.


Ecology and genetics affect relative invasion success of two Echium species in southern Australia.

  • Xiaocheng Zhu‎ et al.
  • Scientific reports‎
  • 2017‎

Echium plantagineum and E. vulgare are congeneric exotics first introduced to Australia in the early 1800 s. There, E. plantagineum is now highly invasive, whereas E. vulgare has a limited distribution. Studies were conducted to evaluate distribution, ecology, genetics and secondary chemistry to shed light on factors associated with their respective invasive success. When sampled across geographically diverse locales, E. plantagineum was widespread and exhibited a small genome size (1 C = 0.34 pg), an annual life cycle, and greater genetic diversity as assessed by DNA sequence analysis. It was found frequently in areas with temperature extremes and low rainfall. In contrast, E. vulgare exhibited a larger genome size (1 C = 0.43 pg), a perennial lifecycle, less chloroplast genetic diversity, and occurred in areas with lower temperatures and higher rainfall. Twelve chloroplast haplotypes of E. plantagineum were evident and incidence aligned well with reported historical introduction events. In contrast, E. vulgare exhibited two haplotypes and was found only sporadically at higher elevations. Echium plantagineum possessed significantly higher levels of numerous pyrrolizidine alkaloids involved in plant defence. We conclude that elevated genetic diversity, tolerance to environmental stress and capacity for producing defensive secondary metabolites have contributed to the successful invasion of E. plantagineum in Australia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: