Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38,133 papers

Ecology of Methanonatronarchaeia.

  • Dimitry Y Sorokin‎ et al.
  • Environmental microbiology‎
  • 2022‎

Methanonatronarchaeia represents a deep-branching phylogenetic lineage of extremely halo(alkali)philic and moderately thermophilic methyl-reducing methanogens belonging to the phylum Halobacteriota. It includes two genera, the alkaliphilic Methanonatronarchaeum and the neutrophilic Ca. Methanohalarchaeum. The former is represented by multiple closely related pure culture isolates from hypersaline soda lakes, while the knowledge about the latter is limited to a few mixed cultures with anaerobic haloarchaea. To get more insight into the distribution and ecophysiology of this enigmatic group of extremophilic methanogens, potential activity tests and enrichment cultivation with different substrates and at different conditions were performed with anaerobic sediment slurries from various hypersaline lakes in Russia. Methanonatronarchaeum proliferated exclusively in hypersaline soda lake samples mostly at elevated temperature, while at mesophilic conditions it coexisted with the extremely salt-tolerant methylotroph Methanosalsum natronophilum. Methanonatronarchaeum was also able to serve as a methylotrophic or hydrogenotrophic partner in several thermophilic enrichment cultures with fermentative bacteria. Ca. Methanohalarchaeum did not proliferate at mesophilic conditions and at thermophilic conditions it competed with extremely halophilic and moderately thermophilic methylotroph Methanohalobium, which it outcompeted at a combination of elevated temperature and methyl-reducing conditions. Overall, the results demonstrated that Methanonatronarchaeia are specialized extremophiles specifically proliferating in conditions of elevated temperature coupled with extreme salinity and simultaneous availability of a wide range of C1 -methylated compounds and H2 /formate.


Predictive systems ecology.

  • Matthew R Evans‎ et al.
  • Proceedings. Biological sciences‎
  • 2013‎

Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive.


The Ecology Underground coalition: building a collaborative future of belowground ecology and ecologists.

  • Camille E Defrenne‎ et al.
  • The New phytologist‎
  • 2021‎

No abstract available


Squamation and ecology of thelodonts.

  • Humberto G Ferrón‎ et al.
  • PloS one‎
  • 2017‎

Thelodonts are an enigmatic group of Paleozoic jawless vertebrates that have been well studied from taxonomical, biostratigraphic and paleogeographic points of view, although our knowledge of their ecology and mode of life is still scant. Their bodies were covered by micrometric scales whose morphology, histology and the developmental process are extremely similar to those of extant sharks. Based on these similarities and on the well-recognized relationship between squamation and ecology in sharks, here we explore the ecological diversity and lifestyles of thelodonts. For this we use classic morphometrics and discriminant analysis to characterize the squamation patterns of a significant number of extant shark species whose ecology is well known. Multivariate analyses have defined a characteristic squamation pattern for each ecological group, thus establishing a comparative framework for inferring lifestyles in thelodonts. We then use this information to study the squamation of the currently described 147 species of thelodonts, known from both articulated and disarticulated remains. Discriminant analysis has allowed recognizing squamation patterns comparable to those of sharks and links them to specific ecological groups. Our results suggest a remarkable ecological diversity in thelodonts. A large number of them were probably demersal species inhabiting hard substrates, within caves and crevices in rocky environments or reefs, taking advantage of the flexibility provided by their micromeric squamations. Contrary to classical interpretations, only few thelodonts were placed among demersal species inhabiting sandy and muddy substrates. Schooling species with defensive scales against ectoparasites could be also abundant suggesting that social interactions and pressure of ectoparasites were present in vertebrates as early the Silurian. The presence of species showing scales suggestive of low to moderate speed and a lifestyle presumably associated with open water environments indicates adaptation of thelodonts to deep water habitats. Scale morphology suggests that some other thelodonts were strong-swimming pelagic species, most of them radiating during the Early Devonian in association with the Nekton Revolution.


Brazilian Cerrado soil Actinobacteria ecology.

  • Monique Suela Silva‎ et al.
  • BioMed research international‎
  • 2013‎

A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.


Spatial ecology of territorial populations.

  • Benjamin G Weiner‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Many ecosystems, from vegetation to biofilms, are composed of territorial populations that compete for both nutrients and physical space. What are the implications of such spatial organization for biodiversity? To address this question, we developed and analyzed a model of territorial resource competition. In the model, all species obey trade-offs inspired by biophysical constraints on metabolism; the species occupy nonoverlapping territories, while nutrients diffuse in space. We find that the nutrient diffusion time is an important control parameter for both biodiversity and the timescale of population dynamics. Interestingly, fast nutrient diffusion allows the populations of some species to fluctuate to zero, leading to extinctions. Moreover, territorial competition spontaneously gives rise to both multistability and the Allee effect (in which a minimum population is required for survival), so that small perturbations can have major ecological effects. While the assumption of trade-offs allows for the coexistence of more species than the number of nutrients-thus violating the principle of competitive exclusion-overall biodiversity is curbed by the domination of "oligotroph" species. Importantly, in contrast to well-mixed models, spatial structure renders diversity robust to inequalities in metabolic trade-offs. Our results suggest that territorial ecosystems can display high biodiversity and rich dynamics simply due to competition for resources in a spatial community.


Ecology of Subseafloor Crustal Biofilms.

  • Gustavo A Ramírez‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

The crustal subseafloor is the least explored and largest biome on Earth. Interrogating crustal life is difficult due to habitat inaccessibility, low-biomass and contamination challenges. Subseafloor observatories have facilitated the study of planktonic life in crustal aquifers, however, studies of life in crust-attached biofilms are rare. Here, we investigate biofilms grown on various minerals at different temperatures over 1-6 years at subseafloor observatories in the Eastern Pacific. To mitigate potential sequence contamination, we developed a new bioinformatics tool - TaxonSluice. We explore ecological factors driving community structure and potential function of biofilms by comparing our sequence data to previous amplicon and metagenomic surveys of this habitat. We reveal that biofilm community structure is driven by temperature rather than minerology, and that rare planktonic lineages colonize the crustal biofilms. Based on 16S rRNA gene overlap, we partition metagenome assembled genomes into planktonic and biofilm fractions and suggest that there are functional differences between these community types, emphasizing the need to separately examine each to accurately describe subseafloor microbe-rock-fluid processes. Lastly, we report that some rare lineages present in our warm and anoxic study site are also found in cold and oxic crustal fluids in the Mid-Atlantic Ridge, suggesting global crustal biogeography patterns.


Portal protein diversity and phage ecology.

  • Matthew B Sullivan‎ et al.
  • Environmental microbiology‎
  • 2008‎

Oceanic phages are critical components of the global ecosystem, where they play a role in microbial mortality and evolution. Our understanding of phage diversity is greatly limited by the lack of useful genetic diversity measures. Previous studies, focusing on myophages that infect the marine cyanobacterium Synechococcus, have used the coliphage T4 portal-protein-encoding homologue, gene 20 (g20), as a diversity marker. These studies revealed 10 sequence clusters, 9 oceanic and 1 freshwater, where only 3 contained cultured representatives. We sequenced g20 from 38 marine myophages isolated using a diversity of Synechococcus and Prochlorococcus hosts to see if any would fall into the clusters that lacked cultured representatives. On the contrary, all fell into the three clusters that already contained sequences from cultured phages. Further, there was no obvious relationship between host of isolation, or host range, and g20 sequence similarity. We next expanded our analyses to all available g20 sequences (769 sequences), which include PCR amplicons from wild uncultured phages, non-PCR amplified sequences identified in the Global Ocean Survey (GOS) metagenomic database, as well as sequences from cultured phages, to evaluate the relationship between g20 sequence clusters and habitat features from which the phage sequences were isolated. Even in this meta-data set, very few sequences fell into the sequence clusters without cultured representatives, suggesting that the latter are very rare, or sequencing artefacts. In contrast, sequences most similar to the culture-containing clusters, the freshwater cluster and two novel clusters, were more highly represented, with one particular culture-containing cluster representing the dominant g20 genotype in the unamplified GOS sequence data. Finally, while some g20 sequences were non-randomly distributed with respect to habitat, there were always numerous exceptions to general patterns, indicating that phage portal proteins are not good predictors of a phage's host or the habitat in which a particular phage may thrive.


Fomite Transmission Follows Invasion Ecology Principles.

  • Peihua Wang‎ et al.
  • mSystems‎
  • 2022‎

The invasion ecology principles illustrated in many ecosystems have not yet been explored in the context of fomite transmission. We hypothesized that invaders in fomite transmission are trackable, are neutrally distributed between hands and environmental surfaces, and exhibit a proximity effect. To test this hypothesis, a surrogate invader, Lactobacillus delbrueckii subsp. bulgaricus, was spread by a root carrier in an office housing more than 20 participants undertaking normal activities, and the microbiotas on skin and environmental surfaces were analyzed before and after invasion. First, we found that the invader was trackable. Its identity and emission source could be determined using microbial-interaction networks, and the root carrier could be identified using a rank analysis. Without prior information, L. bulgaricus could be identified as the invader emitted from a source that exclusively contained the invader, and the probable root carrier could be located. In addition to the single-taxon invasion by L. bulgaricus, multiple-taxon invasion was observed, as genera from sputum/saliva exhibited co-occurrence relationships on skin and environmental surfaces. Second, the invader had a below-neutral distribution in a neutral community model, suggesting that hands accrued heavier invader contamination than environmental surfaces. Third, a proximity effect was observed on a surface touch network. Invader contamination on surfaces decreased with increasing geodesic distance from the hands of the carrier, indicating that the carrier's touching behaviors were the main driver of fomite transmission. Taken together, these results demonstrate the invasion ecology principles in fomite transmission and provide a general basis for the management of ecological fomite transmission. IMPORTANCE Fomite transmission contributes to the spread of many infectious diseases. However, pathogens in fomite transmission typically are either investigated individually without considering the context of native microbiotas or investigated in a nondiscriminatory way from the dispersal of microbiotas. In this study, we adopted an invasion ecology framework in which we considered pathogens as invaders, the surface environment as an ecosystem, and human behaviors as the driver of microbial dispersal. With this approach, we assessed the ability of quantitative ecological theories to track and forecast pathogen movements in fomite transmission. By uncovering the relationships between the invader and native microbiotas and between human behaviors and invader/microbiota dispersal, we demonstrated that fomite transmission follows idiosyncratic invasion ecology principles. Our findings suggest that attempts to manage fomite transmission for public health purposes should focus on the microbial communities and anthropogenic factors involved, in addition to the pathogens.


Modeling the ecology of parasitic plasmids.

  • Jaime G Lopez‎ et al.
  • The ISME journal‎
  • 2021‎

Plasmids are autonomous genetic elements that can be exchanged between microorganisms via horizontal gene transfer (HGT). Despite the central role they play in antibiotic resistance and modern biotechnology, our understanding of plasmids' natural ecology is limited. Recent experiments have shown that plasmids can spread even when they are a burden to the cell, suggesting that natural plasmids may exist as parasites. Here, we use mathematical modeling to explore the ecology of such parasitic plasmids. We first develop models of single plasmids and find that a plasmid's population dynamics and optimal infection strategy are strongly determined by the plasmid's HGT mechanism. We then analyze models of co-infecting plasmids and show that parasitic plasmids are prone to a "tragedy of the commons" in which runaway plasmid invasion severely reduces host fitness. We propose that this tragedy of the commons is averted by selection between competing populations and demonstrate this effect in a metapopulation model. We derive predicted distributions of unique plasmid types in genomes-comparison to the distribution of plasmids in a collection of 17,725 genomes supports a model of parasitic plasmids with positive plasmid-plasmid interactions that ameliorate plasmid fitness costs or promote the invasion of new plasmids.


Evolutionary heritage influences Amazon tree ecology.

  • Fernanda Coelho de Souza‎ et al.
  • Proceedings. Biological sciences‎
  • 2016‎

Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.


On the ecology of Cystophora spp. forests.

  • Albert Pessarrodona‎ et al.
  • Journal of phycology‎
  • 2022‎

Cystophora is the second largest genus of fucoids worldwide and, like many other forest-forming macroalgae, is increasingly threatened by a range of anthropogenic impacts including ocean warming. Yet, limited ecological information is available from the warm portion of their range (SW Western Australia), where severe range contractions are predicted to occur. Here, we provide the first insights on the abundance, diversity, productivity, and stand structure of Cystophora forests in this region. Forests were ubiquitous over more than 800 km of coastline and dominated sheltered and moderately-exposed reefs. Stand biomass and productivity were similar or greater than that of kelp forests in the temperate reef communities examined, suggesting that Cystophora spp. play a similarly important ecological role. The stand structure of Cystophora forests was, however, different than those of kelp forests, with most stands featuring an abundant bank of sub-canopy juveniles and only a few plants forming the canopy layer. Stand productivity followed an opposite seasonal pattern than that of kelps, with maximal growth in late autumn through early winter and net biomass loss in summer. Annually, stands contributed between 2.2 and 5.7 kg · m-2 (fresh biomass) to reef productivity depending on the dominant stand species. We propose that Cystophora forests play an important and unique role in supporting subtidal temperate diversity and productivity throughout temperate Australia, and urge a better understanding of their ecology and responses to anthropogenic threats.


Evolutionary Ecology of Natural Comammox Nitrospira Populations.

  • Alejandro Palomo‎ et al.
  • mSystems‎
  • 2022‎

Microbes commonly exist in diverse and complex communities where species interact, and their genomic repertoires evolve over time. Our understanding of species interaction and evolution has increased during the last decades, but most studies of evolutionary dynamics are based on single species in isolation or in experimental systems composed of few interacting species. Here, we use the microbial ecosystem found in groundwater-fed sand filter as a model to avoid this limitation. In these open systems, diverse microbial communities experience relatively stable conditions, and the coupling between chemical and biological processes is generally well defined. Metagenomic analysis of 12 sand filters communities revealed systematic co-occurrence of at least five comammox Nitrospira species, likely promoted by low ammonium concentrations. These Nitrospira species showed intrapopulation sequence diversity, although possible clonal expansion was detected in a few abundant local comammox populations. Nitrospira species showed low homologous recombination and strong purifying selection, the latter process being especially strong in genes essential in energy metabolism. Positive selection was detected for genes related to resistance to foreign DNA and phages. We found that, compared to other habitats, groundwater-fed sand filters impose strong purifying selection and low recombination on comammox Nitrospira populations. These results suggest that evolutionary processes are more affected by habitat type than by species identity. Together, this study improves our understanding of species interaction and evolution in complex microbial communities and sheds light on the environmental dependency of evolutionary processes. IMPORTANCE Microbial species interact with each other and their environment (ecological processes) and undergo changes in their genomic repertoire over time (evolutionary processes). How these two classes of processes interact is largely unknown, especially for complex communities, as most studies of microbial evolutionary dynamics consider single species in isolation or a few interacting species in simplified experimental systems. In this study, these limitations are circumvented by examining the microbial communities found in stable and well-described groundwater-fed sand filters. Combining metagenomics and strain-level analyses, we identified the microbial interactions and evolutionary processes affecting comammox Nitrospira, a recently discovered bacterial type capable of performing the whole nitrification process. We found that abundant and co-occurrent Nitrospira populations in groundwater-fed sand filters are characterized by low recombination and strong purifying selection. In addition, by comparing these observations with those obtained from Nitrospira species inhabiting other environments, we revealed that evolutionary processes are more affected by habitat type than by species identity.


Removal modelling in ecology: A systematic review.

  • Oscar Rodriguez de Rivera‎ et al.
  • PloS one‎
  • 2021‎

Removal models were proposed over 80 years ago as a tool to estimate unknown population size. More recently, they are used as an effective tool for management actions for the control of non desirable species, or for the evaluation of translocation management actions. Although the models have evolved over time, in essence, the protocol for data collection has remained similar: at each sampling occasion attempts are made to capture and remove individuals from the study area. Within this paper we review the literature of removal modelling and highlight the methodological developments for the analysis of removal data, in order to provide a unified resource for ecologists wishing to implement these approaches. Models for removal data have developed to better accommodate important features of the data and we discuss the shift in the required assumptions for the implementation of the models. The relative simplicity of this type of data and associated models mean that the method remains attractive and we discuss the potential future role of this technique.


Ecology of the digital world of Wikipedia.

  • Fumiko Ogushi‎ et al.
  • Scientific reports‎
  • 2021‎

Wikipedia, a paradigmatic example of online knowledge space is organized in a collaborative, bottom-up way with voluntary contributions, yet it maintains a level of reliability comparable to that of traditional encyclopedias. The lack of selected professional writers and editors makes the judgement about quality and trustworthiness of the articles a real challenge. Here we show that a self-consistent metrics for the network defined by the edit records captures well the character of editors' activity and the articles' level of complexity. Using our metrics, one can better identify the human-labeled high-quality articles, e.g., "featured" ones, and differentiate them from the popular and controversial articles. Furthermore, the dynamics of the editor-article system is also well captured by the metrics, revealing the evolutionary pathways of articles and diverse roles of editors. We demonstrate that the collective effort of the editors indeed drives to the direction of article improvement.


Fossil eggshell cuticle elucidates dinosaur nesting ecology.

  • Tzu-Ruei Yang‎ et al.
  • PeerJ‎
  • 2018‎

The cuticle layer consisting mainly of lipids and hydroxyapatite (HAp) atop the mineralized avian eggshell is a protective structure that prevents the egg from dehydration and microbial invasions. Previous ornithological studies have revealed that the cuticle layer is also involved in modulating the reflectance of eggshells in addition to pigments (protoporphyrin and biliverdin). Thus, the cuticle layer represents a crucial trait that delivers ecological signals. While present in most modern birds, direct evidence for cuticle preservation in stem birds and non-avian dinosaurs is yet missing. Here we present the first direct and chemical evidence for the preservation of the cuticle layer on dinosaur eggshells. We analyze several theropod eggshells from various localities, including oviraptorid Macroolithus yaotunensis eggshells from the Late Cretaceous deposits of Henan, Jiangxi, and Guangdong in China and alvarezsaurid Triprismatoolithus eggshell from the Two Medicine Formation of Montana, United States, with the scanning electron microscope (SEM), electron probe micro-analysis (EPMA), and Raman spectroscopy (RS). The elemental analysis with EPMA shows high concentration of phosphorus at the boundary between the eggshell and sediment, representing the hydroxyapatitic cuticle layer (HAp). Depletion of phosphorus in sediment excludes the allochthonous origin of the phosphorus in these eggshells. The chemometric analysis of Raman spectra collected from fossil and extant eggs provides further supportive evidence for the cuticle preservation in oviraptorid and probable alvarezsaurid eggshells. In accordance with our previous discovery of pigments preserved in Cretaceous oviraptorid dinosaur eggshells, we validate the cuticle preservation on dinosaur eggshells through deep time and offer a yet unexplored resource for chemical studies targeting the evolution of dinosaur nesting ecology. Our study also suggests that the cuticle structure can be traced far back to maniraptoran dinosaurs and enhance their reproductive success in a warm and mesic habitat such as Montana and southern China during the Late Cretaceous.


Using metacommunity ecology to understand environmental metabolomes.

  • Robert E Danczak‎ et al.
  • Nature communications‎
  • 2020‎

Environmental metabolomes are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, significant gaps exist in our understanding of their spatiotemporal organization, limiting our ability to uncover transferrable principles and predict ecosystem function. We propose that a theoretical paradigm, which integrates concepts from metacommunity ecology, is necessary to reveal underlying mechanisms governing metabolomes. We call this synthesis between ecology and metabolomics 'meta-metabolome ecology' and demonstrate its utility using a mass spectrometry dataset. We developed three relational metabolite dendrograms using molecular properties and putative biochemical transformations and performed ecological null modeling. Based upon null modeling results, we show that stochastic processes drove molecular properties while biochemical transformations were structured deterministically. We further suggest that potentially biochemically active metabolites were more deterministically assembled than less active metabolites. Understanding variation in the influences of stochasticity and determinism provides a way to focus attention on which meta-metabolomes and which parts of meta-metabolomes are most likely to be important to consider in mechanistic models. We propose that this paradigm will allow researchers to study the connections between ecological systems and their molecular processes in previously inaccessible detail.


Virus Satellites Drive Viral Evolution and Ecology.

  • Belén Frígols‎ et al.
  • PLoS genetics‎
  • 2015‎

Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts.


Comparative ecology of Guinea baboons (Papio papio).

  • Dietmar Zinner‎ et al.
  • Primate biology‎
  • 2021‎

Thorough knowledge of the ecology of a species or population is an essential prerequisite for understanding the impact of ecology on the evolution of their respective social systems. Because of their diversity of social organizations, baboons (Papio spp.) are a useful model for comparative studies. Comparative ecological information was missing for Guinea baboons (Papio papio), however. Here we provide data on the ecology of Guinea baboons in a comparative analysis on two geographical scales. First, we compare climate variables and land cover among areas of occurrence of all six baboon species. Second, we describe home range size, habitat use, ranging behaviour, and diet from a local population of Guinea baboons ranging near the Centre de Recherche de Primatologie (CRP) Simenti in the Niokolo-Koba National Park, Senegal. Home ranges and daily travel distances at Simenti varied seasonally, yet the seasonal patterns in their daily travel distance did not follow a simple dry vs. rainy season pattern. Chemical food composition falls within the range of other baboon species. Compared to other baboon species, areas occupied by Guinea baboons experience the highest variation in precipitation and the highest seasonality in precipitation. Although the Guinea baboons' multi-level social organization is superficially similar to that of hamadryas baboons (P. hamadryas), the ecologies of the two species differ markedly. Most Guinea baboon populations, including the one at Simenti, live in more productive habitats than hamadryas baboons. This difference in the ecology of the two species contradicts a simple evolutionary relation between ecology and social system and suggests that other factors have played an additional role here.


Reverse Chemical Ecology Suggests Putative Primate Pheromones.

  • Valeriia Zaremska‎ et al.
  • Molecular biology and evolution‎
  • 2022‎

Pheromonal communication is widespread among living organisms, but in apes and particularly in humans there is currently no strong evidence for such phenomenon. Among primates, lemurs use pheromones to communicate within members of the same species, whereas in some monkeys such capabilities seem to be lost. Chemical communication in humans appears to be impaired by the lack or malfunctioning of biochemical tools and anatomical structures mediating detection of pheromones. Here, we report on a pheromone-carrier protein (SAL) adopting a "reverse chemical ecology" approach to get insights on the structures of potential pheromones in a representative species of lemurs (Microcebus murinus) known to use pheromones, Old-World monkeys (Cercocebus atys) for which chemical communication has been observed, and humans (Homo sapiens), where pheromones and chemical communication are still questioned. We have expressed the SAL orthologous proteins of these primate species, after reconstructing the gene encoding the human SAL, which is disrupted due to a single base mutation preventing its translation into RNA. Ligand-binding experiments with the recombinant SALs revealed macrocyclic ketones and lactones as the best ligands for all three proteins, suggesting cyclopentadecanone, pentadecanolide, and closely related compounds as the best candidates for potential pheromones. Such hypothesis agrees with the presence of a chemical very similar to hexadecanolide in the gland secretions of Mandrillus sphinx, a species closely related to C. atys. Our results indicate that the function of this carrier protein has not changed much during evolution from lemurs to humans, although its physiological role has been certainly impaired in humans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: