Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

The myodural bridge existing in the Nephocaena phocaenoides.

  • Pei Liu‎ et al.
  • PloS one‎
  • 2017‎

Recent studies have identified that the myodural bridge (MDB) between the rectus capitis posterior minor (RCPmi) and the cervical spinal dura mater in the posterior atlanto-occipital interspace in humans. And it was supposed that the MDB may play essential physiological roles. As a result, the MDB is possibly a highly conserved structure in the evolution of mammals. However, there is little confirmative description about the existence of the MDB in marine mammals. The objective of this study was to explore the existence and the fiber property of the MDB in the Neophocaena phocaenoides. Six cadavers of the Neophocaena phocaenoides with formalin fixation were used in this study. One was used for head and neck CT scanning and three-dimensional (3D) reconstruction and suboccipital region dissection, two were for sectional observation by P45 plastinated sheets of head and neck, and three were for histological analysis of suboccipial structures. This is the first study to demonstrate the existence of the MDB in the aquatic mammals. The rectus capitis dorsal minor (RCDmi) originated from the inferior border of the occiput and inserted into the cervical spinal dura mater. At the ventral aspect of the RCDmi, the MDB directly extended through the posterior atlanto-occipital interspace and connected with the cervical spinal dura mater which was consisted of type Ⅰ collagen. In addition, the dorsal atlanto-occipital membrane was not found in the Neophocaena phocaenoides. The tendinous myodural bridge extended from the RCDmi to the spinal dura mater through the posterior atlanto-occipital interspace in the Neophocaena phocaenoides.


A specialized myodural bridge named occipital-dural muscle in the narrow-ridged finless porpoise (Neophocaena asiaeorientalis).

  • Zhao-Xi Zhang‎ et al.
  • Scientific reports‎
  • 2021‎

A dense bridge-like tissue named the myodural bridge (MDB) connecting the suboccipital muscles to the spinal dura mater was originally discovered in humans. However, recent animal studies have revealed that the MDB appears to be an evolutionarily conserved anatomic structure which may have significant physiological functions. Our previous investigations have confirmed the existence of the MDB in finless porpoises. The present authors conducted research to expound on the specificity of the MDB in the porpoise Neophocana asiaeorientalis (N.asiaeorientalis). Five carcasses of N.asiaeorientalis, with formalin fixation, were used for the present study. Two of the carcasses were used for head and neck CT scanning, three-dimensional reconstructions, and gross dissection of the suboccipital region. Another carcass was used for a P45 plastination study. Also, a carcass was used for a histological analysis of the suboccipital region and also one was used for a Scanning Electron Microscopy study. The results revealed that the MDB of the N.asiaeorientalis is actually an independent muscle originating from the caudal border of the occiput, passing through the posterior atlanto-occipital interspace, and then attaches to the cervical spinal dura mater. Thus the so called MDB of the N.asiaeorientalis is actually an independent and uniquely specialized muscle. Based on the origin and insertion of this muscle, the present authors name it the 'Occipital-Dural Muscle'. It appears that the direct pull of this muscle on the cervical spinal dura mater may affect the circulation of the cerebrospinal fluid by altering the volume of the subarachnoid space via a pumping action.


The relationship between myodural bridges, hyperplasia of the suboccipital musculature, and intracranial pressure.

  • Chan Li‎ et al.
  • PloS one‎
  • 2022‎

During mammalian evolution, the Myodural Bridges (MDB) have been shown to be highly conserved anatomical structures. However, the putative physiological function of these structures remains unclear. The MDB functionally connects the suboccipital musculature to the cervical spinal dura mater, while passing through the posterior atlanto-occipital and atlanto-axial interspaces. MDB transmits the tensile forces generated by the suboccipital muscles to the cervical dura mater. Moreover, head movements have been shown to be an important contributor to human CSF circulation. In the present study, a 16-week administration of a Myostatin-specific inhibitor, ACE-031, was injected into the suboccipital musculature of rats to establish an experimental animal model of hyperplasia of the suboccipital musculature. Using an optic fiber pressure measurement instrument, the present authors observed a significant increase in intracranial pressure (ICP) while utilizing the hyperplasia model. In contrast, surgically severing the MDB connections resulted in a significant decrease in intracranial pressure. Thus, these results indicated that muscular activation of the MDB may affect CSF circulation, suggesting a potential functional role of the MDB, and providing a new research perspective on CSF dynamics.


Head movement, an important contributor to human cerebrospinal fluid circulation.

  • Qiang Xu‎ et al.
  • Scientific reports‎
  • 2016‎

The suboccipital muscles are connected to the upper cervical spinal dura mater via the myodural bridges (MDBs). Recently, it was suggested that they might work as a pump to provide power for cerebrospinal fluid (CSF) circulation. The purpose of this study was to investigate effects of the suboccipital muscles contractions on the CSF flow. Forty healthy adult volunteers were subjected to cine phase-contrast MR imaging. Each volunteer was scanned twice, once before and once after one-minute-head-rotation period. CSF flow waveform parameters at craniocervical junction were analyzed. The results showed that, after the head rotations, the maximum and average CSF flow rates during ventricular diastole were significantly increased, and the CSF stroke volumes during diastole and during entire cardiac cycle were significantly increased. This suggested that the CSF flow was significantly promoted by head movements. Among the muscles related with head movements, only three suboccipital muscles are connected to the upper cervical spinal dura mater via MDBs. It was believed that MDBs might transform powers of the muscles to CSF. The present results suggested that the head movements served as an important contributor to CSF dynamics and the MDBs might be involved in this mechanism.


The relationship between compensatory hyperplasia of the myodural bridge complex and reduced compliance of the various structures within the cranio-cervical junction.

  • Xue Song‎ et al.
  • Anatomical record (Hoboken, N.J. : 2007)‎
  • 2023‎

The myodural bridge complex (MDBC) is described as a functional anatomic structure that involves the dense connective tissue fibers, muscles, and ligaments in the suboccipital region. It has recently been proposed that the MDBC can influence cerebrospinal fluid (CSF) circulation. In the present study, bleomycin (BLM), a type of antibiotic that is poisonous to cells, was injected into the posterior atlanto-occipital interspace (PAOiS) of rats to induce fibrous hyperplasia of structures in PAOiS. Sagittal sections of tissues obtained from the posterior-occipital region of the rats were stained utilizing the Masson Trichrome staining method. Semiquantitative analysis evidenced that the collagen volume fraction of collagen fibers of the MDBC, as well as the sum of the area of the spinal dura mater and the posterior atlanto-occipital membrane in the BLM group were significantly increased (p < .05) compared to that of the other groups. This finding illustrates that the MDBC fibers as well as other tissues in the PAOiS of rats in the BLM group developed fibrotic changes which reduced compliance of the spinal dura mater. Indeed, the sectional area of the rectus capitis dorsal minor muscle in the BLM group was measured to be increased. These changes may further restrict CSF flow. The present research provides support for the recent hypothesis proposed by Labuda et al. concerning the pathophysiology observed in symptomatic adult Chiari malformation Type I patients, that there exists a relationship between the altered compliance of the anatomic structures within the craniocervical region and the resultant compensatory hyperplasia of the MDBC.


The relationship between myodural bridge, atrophy and hyperplasia of the suboccipital musculature, and cerebrospinal fluid dynamics.

  • Heng Yang‎ et al.
  • Scientific reports‎
  • 2023‎

The Myodural Bridge (MDB) is a physiological structure that is highly conserved in mammals and many of other tetrapods. It connects the suboccipital muscles to the cervical spinal dura mater (SDM) and transmits the tensile forces generated by the suboccipital muscles to the SDM. Consequently, the MDB has broader physiological potentials than just fixing the SDM. It has been proposed that MDB significantly contributes to the dynamics of cerebrospinal fluid (CSF) movements. Animal models of suboccipital muscle atrophy and hyperplasia were established utilizing local injection of BTX-A and ACE-031. In contrast, animal models with surgical severance of suboccipital muscles, and without any surgical operation were set as two types of negative control groups. CSF secretion and reabsorption rates were then measured for subsequent analysis. Our findings demonstrated a significant increase in CSF secretion rate in rats with the hyperplasia model, while there was a significant decrease in rats with the atrophy and severance groups. We observed an increase in CSF reabsorption rate in both the atrophy and hyperplasia groups, but no significant change was observed in the severance group. Additionally, our immunohistochemistry results revealed no significant change in the protein level of six selected choroid plexus-CSF-related proteins among all these groups. Therefore, it was indicated that alteration of MDB-transmitted tensile force resulted in changes of CSF secretion and reabsorption rates, suggesting the potential role that MDB may play during CSF circulation. This provides a unique research insight into CSF dynamics.


The morphology, biomechanics, and physiological function of the suboccipital myodural connections.

  • Yue Ma‎ et al.
  • Scientific reports‎
  • 2021‎

The myodural bridge (MDB) connects the suboccipital musculature to the spinal dura mater (SDM) as it passed through the posterior atlanto-occipital and the atlanto-axial interspaces. Although the actual function of the MDB is not understood at this time, it has recently been proposed that head movement may assist in powering the movement of cerebrospinal fluid (CSF) via muscular tension transmitted to the SDM via the MDB. But there is little information about it. The present study utilized dogs as the experimental model to explore the MDB's effects on the CSF pressure (CSFP) during stimulated contractions of the suboccipital muscles as well as during manipulated movements of the atlanto-occiptal and atlanto-axial joints. The morphology of MDB was investigated by gross anatomic dissection and by histological observation utilizing both light microscopy and scanning electron microscopy. Additionally biomechanical tensile strength tests were conducted. Functionally, the CSFP was analyzed during passive head movements and electrical stimulation of the suboccipital muscles, respectively. The MDB was observed passing through both the dorsal atlanto-occipital and the atlanto-axial interspaces of the canine and consisted of collagenous fibers. The tensile strength of the collagenous fibers passing through the dorsal atlanto-occipital and atlanto-axial interspaces were 0.16 ± 0.04 MPa and 0.82 ± 0.57 MPa, respectively. Passive head movement, including lateral flexion, rotation, as well as flexion-extension, all significantly increased CSFP. Furthermore, the CSFP was significantly raised from 12.41 ± 4.58 to 13.45 ± 5.16 mmHg when the obliques capitis inferior (OCI) muscles of the examined specimens were electrically stimulated. This stimulatory effect was completely eliminated by severing the myodural bridge attachments to the OCI muscle. Head movements appeared to be an important factor affecting CSF pressure, with the MDB of the suboccipital muscles playing a key role this process. The present study provides direct evidence to support the hypothesis that the MDB may be a previously unappreciated significant power source (pump) for CSF circulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: