Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 209 papers

Tensile properties of human spinal dura mater and pericranium.

  • Sacha Cavelier‎ et al.
  • Journal of materials science. Materials in medicine‎
  • 2022‎

Autologous pericranium is a promising dural graft material. An optimal graft should exhibit similar mechanical properties to the native dura, but the mechanical properties of human pericranium have not been characterized, and studies of the biomechanical performance of human spinal dura are limited. The primary aim of this study was to measure the tensile structural and material properties of the pericranium, in the longitudinal and circumferential directions, and of the dura in each spinal region (cervical, thoracic and lumbar) and in three directions (longitudinal anterior and posterior, and circumferential). The secondary aim was to determine corresponding constitutive stress-strain equations using a one-term Ogden model. A total of 146 specimens were tested from 7 cadavers. Linear regression models assessed the effect of tissue type, region, and orientation on the structural and material properties. Pericranium was isotropic, while spinal dura was anisotropic with higher stiffness and strength in the longitudinal than the circumferential direction. Pericranium had lower strength and modulus than spinal dura across all regions in the longitudinal direction but was stronger and stiffer than dura in the circumferential direction. Spinal dura and pericranium had similar strain at peak force, toe, and yield, across all regions and directions. Human pericranium exhibits isotropic mechanical behavior that lies between that of the longitudinal and circumferential spinal dura. Further studies are required to determine if pericranium grafts behave like native dura under in vivo loading conditions. The Ogden parameters reported may be used for computational modeling of the central nervous system. Graphical abstract.


Histological investigations on the dura mater vascular system of mice.

  • Badreddine Mecheri‎ et al.
  • Acta histochemica‎
  • 2018‎

The human dura mater encephali is a well innervated and vascularized membrane. Its vascular system plays a crucial role in disorders and pathological cases like dural hematoma, meningitis, and different headache types. To investigate these diseases mouse models are increasingly being used. However, the literature on the vascular system of the mouse dura mater is sparse and explicit studies concerned exclusively with its vasculature are lacking. Here we present a detailed light and scanning electron microscopic investigation of the supratentorial dura mater of the mouse species, with a focus on the largest part of it, the parietal dura mater. By utilizing different immunohistochemical and classical staining methods, a "cartography" of the vascular system was achieved. Additionally, the different blood vessel types with their mural cells were characterized. In contrast to humans, no arteries were found in the mouse parietal dura mater. Its supply is assured through frontolateral and occipital localized arteriolar branches. These arteriolar vessels exhibit in some specimens arteriolar anastomoses with one another. The venous blood is drained to the superior sagittal and transverse sinus through satellite venules accompanying the arterioles or through solitary venules. In all samples, large ruptured venules were identified in the frontolateral dural area. Scanning electron microscopy revealed that these vessels were ruptured on the dorsal side (skull bones-oriented side) of the dura. Our results contribute to the anatomical data on the mouse species and may set up a basis for fundamental investigation of disorders, for which the role of dural blood vessels is not yet clarified.


Immunohistochemical visualization of lymphatic vessels in human dura mater: methodological perspectives.

  • César Luis Vera Quesada‎ et al.
  • Fluids and barriers of the CNS‎
  • 2023‎

Despite greatly renewed interest concerning meningeal lymphatic function over recent years, the lymphatic structures of human dura mater have been less characterized. The available information derives exclusively from autopsy specimens. This study addressed methodological aspects of immunohistochemistry for visualization and characterization of lymphatic vessels in the dura of patients.


Author response: Lymphoplasmacyte-rich meningioma involving the whole intracranial dura mater.

  • Xiang Yang‎ et al.
  • Neurology‎
  • 2019‎

No abstract available


Storage and purification adaptations for the isolation of total RNA from the dura mater.

  • Maria Rosana de Souza Ferreira‎ et al.
  • Arquivos de neuro-psiquiatria‎
  • 2022‎

RNA extraction is a step that precedes several molecular techniques. The fibrous tissue, more specifically the dura mater, has several limitations in routine protocols, and lacks optimization protocols to overcome these problems.


Widespread distribution of lymphatic vessels in human dura mater remote from sinus veins.

  • César Luis Vera Quesada‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

Background and purpose: Previous experimental studies have shown that meningeal lymphatic vessels are located primarily along the walls of the dural sinus veins. Whether they are more widespread throughout human dura mater has presently not been characterized. The present study explored in humans whether meningeal lymphatic vessels may be identified remote from the sinus veins and whether they differ in the various location of dura mater. Methods: We included 15 patients who underwent neurosurgery, in whom dura mater was removed as part of the planned procedure. Tissue was prepared for immunohistochemistry using the lymphatic endothelial cell markers lymphatic vessel endothelial hyaluronan receptor 1 protein (LYVE-1), podoplanin and vascular endothelial growth factor receptor 3 (VEGFR3). Results: Lymphatic endothelial cell positive cells were found in dura mater at the posterior fossa (n = 8), temporal skull base (n = 5), frontal convexity (n = 1), and cranio-cervical junction (n = 1). They were most commonly seen remote from blood vessels, but also occurred along blood vessels, and seemed to be most abundant at the skull base. Conclusion: The present observations show that human lymphatic vessels are widespread in dura mater, not solely lining the dural sinuses.


Corneal injury is associated with stromal and vascular alterations within cranial dura mater.

  • Olga V Glinskii‎ et al.
  • PloS one‎
  • 2023‎

The cornea and cranial dura mater share sensory innervation. This link raises the possibility that pathological impulses mediated by corneal injury may be transmitted to the cranial dura, trigger dural perivascular/connective tissue nociceptor responses, and induce vascular and stromal alterations affecting dura mater blood and lymphatic vessel functionality. In this study, using a mouse model, we demonstrate for the first time that two weeks after the initial insult, alkaline injury to the cornea leads to remote pathological changes within the coronal suture area of the dura mater. Specifically, we detected significant pro-fibrotic changes in the dural stroma, as well as vascular remodeling characterized by alterations in vascular smooth muscle cell (VSMC) morphology, reduced blood vessel VSMC coverage, endothelial cell expression of the fibroblast specific protein 1, and significant increase in the number of podoplanin-positive lymphatic sprouts. Intriguingly, the deficiency of a major extracellular matrix component, small leucine-rich proteoglycan decorin, modifies both the direction and the extent of these changes. As the dura mater is the most important route for the brain metabolic clearance, these results are of clinical relevance and provide a much-needed link explaining the association between ophthalmic conditions and the development of neurodegenerative diseases.


Trigeminal activation patterns evoked by chemical stimulation of the dura mater in rats.

  • Klaudia Flóra Laborc‎ et al.
  • The journal of headache and pain‎
  • 2020‎

Although migraine is one of the most common primary headaches, its therapy is still limited in many cases. The use of animal models is crucial in the development of novel therapeutic strategies, but unfortunately, none of them show all aspects of the disease, therefore, there is a constant need for further improvement in this field. The application of inflammatory agents on the dura mater is a widely accepted method to mimic neurogenic inflammation in rodents, which plays a key role in the pathomechanism of migraine. Complete Freund's Adjuvant (CFA), and a mixture of inflammatory mediators, called inflammatory soup (IS) are often used for this purpose.


A three-dimensional digital atlas of the dura mater based on human head MRI.

  • Zhirong Yang‎ et al.
  • Brain research‎
  • 2015‎

The goal of this paper was to design a three-dimensional (3D) digital dural atlas of the human brain for assisting neurosurgeons during the planning of an operation, medical research and teaching activities in neurosurgical anatomy.


Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells.

  • Zhiyuan Zhao‎ et al.
  • Polymers‎
  • 2022‎

The development and treatment of some diseases, such as large-area cerebral infarction, cerebral hemorrhage, brain tumor, and craniocerebral trauma, which may involve the injury of the dura mater, elicit the need to repair this membrane by dural grafts. However, common dural grafts tend to result in dural adhesions and scar tissue and have no further neuroprotective effects. In order to reduce or avoid the complications of dural repair, we used PLGA, tetramethylpyrazine, and chitosan as raw materials to prepare a nanofibrous dura mater (NDM) with excellent biocompatibility and adequate mechanical characteristics, which can play a neuroprotective role and have an antifibrotic effect. We fabricated PLGA NDM by electrospinning, and then chitosan was grafted on the nanofibrous dura mater by the EDC-NHS cross-linking method to obtain PLGA/CS NDM. Then, we also prepared PLGA/TMP/CS NDM by coaxial electrospinning. Our study shows that the PLGA/TMP/CS NDM can inhibit the excessive proliferation of fibroblasts, as well as provide a sustained protective effect on the SH-SY5Y cells treated with oxygen-glucose deprivation/reperfusion (OGD/R). In conclusion, our study may provide a new alternative to dural grafts in undesirable cases of dural injuries.


CGRP outflow into jugular blood and cerebrospinal fluid and permeance for CGRP of rat dura mater.

  • Miriam Risch‎ et al.
  • The journal of headache and pain‎
  • 2021‎

Calcitonin gene-related peptide (CGRP) is released from activated meningeal afferent fibres in the cranial dura mater, which likely accompanies severe headache attacks. Increased CGRP levels have been observed in different extracellular fluid compartments during primary headaches such as migraine but it is not entirely clear how CGRP is drained from the meninges.


Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding.

  • Francesca Rossi‎ et al.
  • Polymers‎
  • 2021‎

Dura mater repair represents a final and crucial step in neurosurgery: an inadequate dural reconstruction determines dreadful consequences that significantly increase morbidity and mortality rates. Different dural substitutes have been used with suboptimal results. To overcome this issue, in previous studies, we proposed a laser-based approach to the bonding of porcine dura mater, evidencing the feasibility of the laser-assisted procedure. In this work, we present the optimization of this approach in ex vivo experiments performed on porcine dura mater. An 810-nm continuous-wave AlGaAs (Aluminium Gallium Arsenide) diode laser was used for welding Indocyanine Green-loaded patches (ICG patches) to the dura. The ICG-loaded patches were fabricated using chitosan, a resistant, pliable and stable in the physiological environment biopolymer; moreover, their absorption peak was very close to the laser emission wavelength. Histology, thermal imaging and leak pressure tests were used to evaluate the bonding effect. We demonstrated that the application of 3 watts (W), pulsed mode (Ton 30 ms, Toff 3.5 ms) laser light induces optimal welding of the ICG patch to the dura mater, ensuring an average fluid leakage pressure of 216 ± 105 mmHg, falling within the range of physiological parameters. This study demonstrated that the thermal effect is limited and spatially confined and that the laser bonding procedure can be used to close the dura mater. Our results showed the effectiveness of this approach and encourage further experiments in in vivo models.


Distribution and possible function of galanin about headache and immune system in the rat dura mater.

  • Kenichiro Shimazaki‎ et al.
  • Scientific reports‎
  • 2022‎

Galanin (GAL) is a nociceptive transmitter or modulator in the trigeminal sensory system. In this study, GAL expression was investigated in the rat dura mater to demonstrate its possible function in headache using immunohistochemical techniques. The cerebral falx and cerebellar dura mater received abundant blood and nerve supply, and were significantly thicker compared to other portions in the cerebral dura mater. GAL-immunoreactivity was expressed by cell and nerve fiber profiles. Presumed macrophages and dendritic cells contained GAL-immunoreactivity, and co-expressed with CD11b-immunoreactivity. Many isolated and perivascular nerve fibers also showed GAL-immunoreactivity. In addition, GAL-immunoreactive nerve fibers were present in the vicinity of macrophages and dendritic cells with either GAL- or ED1-immunoreactivity. GAL-immunoreactive cells and nerve fibers were common in the cerebral falx and cerebellar dura mater and infrequent in other portions. And, GAL-immunoreactive nerve fibers usually co-expressed calcitonin gene-related peptide (CGRP)-immunoreactivity. In the trigeminal ganglion, a substantial proportion of sensory neurons innervating the dura mater contained GAL-immunoreactivity (mean ± SD, 3.4 ± 2.2%), and co-expressed CGRP-immunoreactivity (2.7 ± 2.1%). The present study may suggest that GAL is associated with nociceptive transduction or modulation in the dura mater. GAL also possibly plays a role in the immune mechanism of the dura mater.


Optic nerve sheath diameter in intracranial hypertension: Measurement external or internal of the dura mater?

  • Jakob Pansell‎ et al.
  • Journal of neuroimaging : official journal of the American Society of Neuroimaging‎
  • 2023‎

Optic nerve sheath diameter (ONSD) is a promising metric to estimate intracranial pressure (ICP). There is no consensus whether ONSD should be measured external (ONSDext) or internal (ONSDint) of the dura mater. Expert opinion favors ONSDint, though without clear evidence to support this. Adjustments of ONSD for eye diameter (ED) and optic nerve diameter (OND) have been suggested to improve precision. We examined the diagnostic accuracy of ONSDext and ONSDint for estimating ICP, unadjusted as well as adjusted for ED and OND.


Vertical osteoconductivity of sputtered hydroxyapatite-coated mini titanium implants after dura mater elevation: Rabbit calvarial model.

  • Xin Wang‎ et al.
  • Journal of tissue engineering‎
  • 2015‎

This study evaluated the quantity and quality of newly formed vertical bone induced by sputtered hydroxyapatite-coated titanium implants compared with sandblasted acid-etched implants after dura mater elevation. Hydroxyapatite-coated and non-coated implants (n = 20/group) were used and divided equally into two groups. All implants were randomly placed into rabbit calvarial bone (four implants for each animal) emerging from the inferior cortical layer, displacing the dura mater 3 mm below the original bone. Animals were sacrificed at 4 (n = 5) and 8 (n = 5) weeks post-surgery. Vertical bone height and area were analyzed histologically and radiographically below the original bone. Vertical bone formation was observed in both groups. At 4 and 8 weeks, vertical bone height reached a significantly higher level in the hydroxyapatite compared with the non-coated group (p < 0.05). Vertical bone area was significantly larger in the hydroxyapatite compared with the non-coated group at 4 and 8 weeks (p < 0.05). This study indicates that vertical bone formation can be induced by dura mater elevation and sputtered hydroxyapatite coating can enhance vertical bone formation.


The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow.

  • Mária Dux‎ et al.
  • Cells‎
  • 2022‎

Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13-20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain.


Postmortem Human Dura Mater Cells Exhibit Phenotypic, Transcriptomic and Genetic Abnormalities that Impact their Use for Disease Modeling.

  • Andrea R Argouarch‎ et al.
  • Stem cell reviews and reports‎
  • 2022‎

Patient-derived cells hold great promise for precision medicine approaches in human health. Human dermal fibroblasts have been a major source of cells for reprogramming and differentiating into specific cell types for disease modeling. Postmortem human dura mater has been suggested as a primary source of fibroblasts for in vitro modeling of neurodegenerative diseases. Although fibroblast-like cells from human and mouse dura mater have been previously described, their utility for reprogramming and direct differentiation protocols has not been fully established. In this study, cells derived from postmortem dura mater are directly compared to those from dermal biopsies of living subjects. In two instances, we have isolated and compared dermal and dural cell lines from the same subject. Notably, striking differences were observed between cells of dermal and dural origin. Compared to dermal fibroblasts, postmortem dura mater-derived cells demonstrated different morphology, slower growth rates, and a higher rate of karyotype abnormality. Dura mater-derived cells also failed to express fibroblast protein markers. When dermal fibroblasts and dura mater-derived cells from the same subject were compared, they exhibited highly divergent gene expression profiles that suggest dura mater cells originated from a mixed mural lineage. Given their postmortem origin, somatic mutation signatures of dura mater-derived cells were assessed and suggest defective DNA damage repair. This study argues for rigorous karyotyping of postmortem derived cell lines and highlights limitations of postmortem human dura mater-derived cells for modeling normal biology or disease-associated pathobiology.


Joint eQTL assessment of whole blood and dura mater tissue from individuals with Chiari type I malformation.

  • Eric F Lock‎ et al.
  • BMC genomics‎
  • 2015‎

Expression quantitative trait loci (eQTL) play an important role in the regulation of gene expression. Gene expression levels and eQTLs are expected to vary from tissue to tissue, and therefore multi-tissue analyses are necessary to fully understand complex genetic conditions in humans. Dura mater tissue likely interacts with cranial bone growth and thus may play a role in the etiology of Chiari Type I Malformation (CMI) and related conditions, but it is often inaccessible and its gene expression has not been well studied. A genetic basis to CMI has been established; however, the specific genetic risk factors are not well characterized.


A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain.

  • Hannah R Joo‎ et al.
  • Journal of neural engineering‎
  • 2019‎

Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip.


Pulsed estrogen therapy prevents post-OVX porcine dura mater microvascular network weakening via a PDGF-BB-dependent mechanism.

  • Olga V Glinskii‎ et al.
  • PloS one‎
  • 2013‎

In postmenopausal women, estrogen (E2) deficiencies are frequently associated with higher risk of intracranial hemorrhage, increased incidence of stroke, cerebral aneurysm, and decline in cognitive abilities. In younger postpartum women and those using oral contraceptives, perturbations in E2 are associated with higher risk of cerebral venous thrombosis. A number of serious intracranial pathologic conditions linked to E2 deficiencies, such as dural sinus thrombosis, dural fistulae, non-parenchymal intracranial hemorrhages, migraines, and spontaneous cerebrospinal fluid leaks, involve the vessels not of the brain itself, but of the outer fibrous membrane of the brain, the dura mater (DM). The pathogenesis of these disorders remains mysterious and how estrogen regulates structural and functional integrity of DM vasculature is largely unknown. Here, we demonstrate that post ovariectomy (OVX) DM vascular remodeling is manifested by microvessel destabilization, capillary rarefaction, increased vascular permeability, and aberrant angio-architecture, and is the result of disrupted E2-regulated PDGF-BB signaling within dura microvasculature. These changes, associated with the reduction in systemic PDGF-BB levels, are not corrected by a flat-dose E2 hormone replacement therapy (HRT), but are largely prevented using HRT schedules mimicking physiological E2 fluctuations. We demonstrate that 1) E2 regulates PDGF-BB production by endothelial cells in a dose-dependent manner and 2) optimization of PDGF-BB levels and induction of robust PDGF-mediated endothelial cell-vascular pericyte interactions require high (estrous) E2 concentrations. We conclude that high (estrous) levels of E2 are important in controlling PDGF-mediated crosstalk between endothelial cells and pericytes, a fundamental mechanism governing microvessel stability and essential for preserving intracranial homeostasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: