Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,600 papers

Predicting drug-target interactions using drug-drug interactions.

  • Shinhyuk Kim‎ et al.
  • PloS one‎
  • 2013‎

Computational methods for predicting drug-target interactions have become important in drug research because they can help to reduce the time, cost, and failure rates for developing new drugs. Recently, with the accumulation of drug-related data sets related to drug side effects and pharmacological data, it has became possible to predict potential drug-target interactions. In this study, we focus on drug-drug interactions (DDI), their adverse effects ([Formula: see text]) and pharmacological information ([Formula: see text]), and investigate the relationship among chemical structures, side effects, and DDIs from several data sources. In this study, [Formula: see text] data from the STITCH database, [Formula: see text] from drugs.com, and drug-target pairs from ChEMBL and SIDER were first collected. Then, by applying two machine learning approaches, a support vector machine (SVM) and a kernel-based L1-norm regularized logistic regression (KL1LR), we showed that DDI is a promising feature in predicting drug-target interactions. Next, the accuracies of predicting drug-target interactions using DDI were compared to those obtained using the chemical structure and side effects based on the SVM and KL1LR approaches, showing that DDI was the data source contributing the most for predicting drug-target interactions.


Pharmacointeraction network models predict unknown drug-drug interactions.

  • Aurel Cami‎ et al.
  • PloS one‎
  • 2013‎

Drug-drug interactions (DDIs) can lead to serious and potentially lethal adverse events. In recent years, several drugs have been withdrawn from the market due to interaction-related adverse events (AEs). Current methods for detecting DDIs rely on the accumulation of sufficient clinical evidence in the post-market stage - a lengthy process that often takes years, during which time numerous patients may suffer from the adverse effects of the DDI. Detection methods are further hindered by the extremely large combinatoric space of possible drug-drug-AE combinations. There is therefore a practical need for predictive tools that can identify potential DDIs years in advance, enabling drug safety professionals to better prioritize their limited investigative resources and take appropriate regulatory action. To meet this need, we describe Predictive Pharmacointeraction Networks (PPINs) - a novel approach that predicts unknown DDIs by exploiting the network structure of all known DDIs, together with other intrinsic and taxonomic properties of drugs and AEs. We constructed an 856-drug DDI network from a 2009 snapshot of a widely-used drug safety database, and used it to develop PPIN models for predicting future DDIs. We compared the DDIs predicted based solely on these 2009 data, with newly reported DDIs that appeared in a 2012 snapshot of the same database. Using a standard multivariate approach to combine predictors, the PPIN model achieved an AUROC (area under the receiver operating characteristic curve) of 0.81 with a sensitivity of 48% given a specificity of 90%. An analysis of DDIs by severity level revealed that the model was most effective for predicting "contraindicated" DDIs (AUROC = 0.92) and less effective for "minor" DDIs (AUROC = 0.63). These results indicate that network based methods can be useful for predicting unknown drug-drug interactions.


Modified linear regression predicts drug-target interactions accurately.

  • Krisztian Buza‎ et al.
  • PloS one‎
  • 2020‎

State-of-the-art approaches for the prediction of drug-target interactions (DTI) are based on various techniques, such as matrix factorisation, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we propose the framework of Asymmetric Loss Models (ALM) which is more consistent with the underlying chemical reality compared with conventional regression techniques. Furthermore, we propose to use an asymmetric loss model with BLM to predict drug-target interactions accurately. We evaluate our approach on publicly available real-world drug-target interaction datasets. The results show that our approach outperforms state-of-the-art DTI techniques, including recent versions of BLM.


All-Purpose Containers? Lipid-Binding Protein - Drug Interactions.

  • Tiziana Beringhelli‎ et al.
  • PloS one‎
  • 2015‎

The combined use of in vitro (19F-NMR) and in silico (molecular docking) procedures demonstrates the affinity of a number of human calycins (lipid-binding proteins from ileum, liver, heart, adipose tissue and epidermis, and retinol-binding protein from intestine) for different drugs (mainly steroids and vastatins). Comparative evaluations on the complexes outline some of the features relevant for interaction (non-polar character of the drugs; amino acids and water molecules in the protein calyx most often involved in binding). Dissociation constants (Ki) for drugs typically lie in the same range as Ki for natural ligands; in most instances (different proteins and docking conditions), vastatins are the strongest interactors, with atorvastatin ranking top in half of the cases. The affinity of some calycins for some of the vastatins is in the order of magnitude of the drug Cmax after systemic administration in humans. The possible biological implications of this feature are discussed in connection with drug delivery parameters (route of administration, binding to carrier proteins, distribution to, and accumulation in, human tissues).


Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

  • Yin Lu‎ et al.
  • PloS one‎
  • 2017‎

Identifying drug-drug interaction (DDI) is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings) terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.


Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks.

  • Kyunghyun Park‎ et al.
  • PloS one‎
  • 2015‎

As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw.


Co-prescription trends in a large cohort of subjects predict substantial drug-drug interactions.

  • Jeffrey J Sutherland‎ et al.
  • PloS one‎
  • 2015‎

Pharmaceutical prescribing and drug-drug interaction data underlie recommendations on drug combinations that should be avoided or closely monitored by prescribers. Because the number of patients taking multiple medications is increasing, a comprehensive view of prescribing patterns in patients is important to better assess real world pharmaceutical response and evaluate the potential for multi-drug interactions. We obtained self-reported prescription data from NHANES surveys between 1999 and 2010, and confirm the previously reported finding of increasing drug use in the elderly. We studied co-prescription drug trends by focusing on the 2009-2010 survey, which contains prescription data on 690 drugs used by 10,537 subjects. We found that medication profiles were unique for individuals aged 65 years or more, with ≥98 unique drug regimens encountered per 100 subjects taking 3 or more medications. When drugs were viewed by therapeutic class, it was found that the most commonly prescribed drugs were not the most commonly co-prescribed drugs for any of the 16 drug classes investigated. We cross-referenced these medication lists with drug interaction data from Drugs.com to evaluate the potential for drug interactions. The number of drug alerts rose proportionally with the number of co-prescribed medications, rising from 3.3 alerts for individuals prescribed 5 medications to 11.7 alerts for individuals prescribed 10 medications. We found 22% of elderly subjects taking both a substrate and inhibitor of a given cytochrome P450 enzyme, and 4% taking multiple inhibitors of the same enzyme simultaneously. By examining drug pairs prescribed in 0.1% of the population or more, we found low agreement between co-prescription rate and co-discussion in the literature. These data show that prescribing trends in treatment could drive a large extent of individual variability in drug response, and that current pairwise approaches to assessing drug-drug interactions may be inadequate for predicting real world outcomes.


Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile.

  • Twan van Laarhoven‎ et al.
  • PloS one‎
  • 2013‎

In silico discovery of interactions between drug compounds and target proteins is of core importance for improving the efficiency of the laborious and costly experimental determination of drug-target interaction. Drug-target interaction data are available for many classes of pharmaceutically useful target proteins including enzymes, ion channels, GPCRs and nuclear receptors. However, current drug-target interaction databases contain a small number of drug-target pairs which are experimentally validated interactions. In particular, for some drug compounds (or targets) there is no available interaction. This motivates the need for developing methods that predict interacting pairs with high accuracy also for these 'new' drug compounds (or targets). We show that a simple weighted nearest neighbor procedure is highly effective for this task. We integrate this procedure into a recent machine learning method for drug-target interaction we developed in previous work. Results of experiments indicate that the resulting method predicts true interactions with high accuracy also for new drug compounds and achieves results comparable or better than those of recent state-of-the-art algorithms. Software is publicly available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2013/.


Comparison of potential drug-drug interactions with metabolic syndrome medications detected by two databases.

  • Bovornpat Suriyapakorn‎ et al.
  • PloS one‎
  • 2019‎

Drug-drug interactions (DDIs) are one of the most common drug-related problems. Recently, electronic databases have drug interaction tools to search for potential DDIs, for example, Micromedex and Drugs.com. However, Micromedex and Drugs.com have different abilities in detecting potential DDIs, and this might cause misinformation to occur between patients and health care providers.


Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning.

  • Andrej Kastrin‎ et al.
  • PloS one‎
  • 2018‎

Drug-drug interaction (DDI) is a change in the effect of a drug when patient takes another drug. Characterizing DDIs is extremely important to avoid potential adverse drug reactions. We represent DDIs as a complex network in which nodes refer to drugs and links refer to their potential interactions. Recently, the problem of link prediction has attracted much consideration in scientific community. We represent the process of link prediction as a binary classification task on networks of potential DDIs. We use link prediction techniques for predicting unknown interactions between drugs in five arbitrary chosen large-scale DDI databases, namely DrugBank, KEGG, NDF-RT, SemMedDB, and Twosides. We estimated the performance of link prediction using a series of experiments on DDI networks. We performed link prediction using unsupervised and supervised approach including classification tree, k-nearest neighbors, support vector machine, random forest, and gradient boosting machine classifiers based on topological and semantic similarity features. Supervised approach clearly outperforms unsupervised approach. The Twosides network gained the best prediction performance regarding the area under the precision-recall curve (0.93 for both random forests and gradient boosting machine). The applied methodology can be used as a tool to help researchers to identify potential DDIs. The supervised link prediction approach proved to be promising for potential DDIs prediction and may facilitate the identification of potential DDIs in clinical research.


A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions.

  • Mohammed H Cherkaoui-Rbati‎ et al.
  • PloS one‎
  • 2017‎

All pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ. Nevertheless, the lobule (liver unit), located at the end of each branch, is composed of many sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug concentration, enzyme level). A liver model was constructed by describing the geometry of a lobule, where the blood velocity increases toward the central vein, and by modeling the exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and induction, were accounted for with an undefined number of drugs and/or enzymes. The liver model was incorporated into a physiological-based pharmacokinetic (PBPK) model and simulations produced, that in turn were compared to ten clinical results. The liver model generated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacokinetics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s) including spatial and temporal enzyme levels changes. The model presented herein may reduce costs and the use of laboratory animals and give the opportunity to explore different clinical scenarios, which reduce the risk of adverse events, prior to costly human clinical studies.


A landscape for drug-target interactions based on network analysis.

  • Edgardo Galan-Vasquez‎ et al.
  • PloS one‎
  • 2021‎

In this work, we performed an analysis of the networks of interactions between drugs and their targets to assess how connected the compounds are. For our purpose, the interactions were downloaded from the DrugBank database, and we considered all drugs approved by the FDA. Based on topological analysis of this interaction network, we obtained information on degree, clustering coefficient, connected components, and centrality of these interactions. We identified that this drug-target interaction network cannot be divided into two disjoint and independent sets, i.e., it is not bipartite. In addition, the connectivity or associations between every pair of nodes identified that the drug-target network is constituted of 165 connected components, where one giant component contains 4376 interactions that represent 89.99% of all the elements. In this regard, the histamine H1 receptor, which belongs to the family of rhodopsin-like G-protein-coupled receptors and is activated by the biogenic amine histamine, was found to be the most important node in the centrality of input-degrees. In the case of centrality of output-degrees, fostamatinib was found to be the most important node, as this drug interacts with 300 different targets, including arachidonate 5-lipoxygenase or ALOX5, expressed on cells primarily involved in regulation of immune responses. The top 10 hubs interacted with 33% of the target genes. Fostamatinib stands out because it is used for the treatment of chronic immune thrombocytopenia in adults. Finally, 187 highly connected sets of nodes, structured in communities, were also identified. Indeed, the largest communities have more than 400 elements and are related to metabolic diseases, psychiatric disorders and cancer. Our results demonstrate the possibilities to explore these compounds and their targets to improve drug repositioning and contend against emergent diseases.


SELF-BLM: Prediction of drug-target interactions via self-training SVM.

  • Jongsoo Keum‎ et al.
  • PloS one‎
  • 2017‎

Predicting drug-target interactions is important for the development of novel drugs and the repositioning of drugs. To predict such interactions, there are a number of methods based on drug and target protein similarity. Although these methods, such as the bipartite local model (BLM), show promise, they often categorize unknown interactions as negative interaction. Therefore, these methods are not ideal for finding potential drug-target interactions that have not yet been validated as positive interactions. Thus, here we propose a method that integrates machine learning techniques, such as self-training support vector machine (SVM) and BLM, to develop a self-training bipartite local model (SELF-BLM) that facilitates the identification of potential interactions. The method first categorizes unlabeled interactions and negative interactions among unknown interactions using a clustering method. Then, using the BLM method and self-training SVM, the unlabeled interactions are self-trained and final local classification models are constructed. When applied to four classes of proteins that include enzymes, G-protein coupled receptors (GPCRs), ion channels, and nuclear receptors, SELF-BLM showed the best performance for predicting not only known interactions but also potential interactions in three protein classes compare to other related studies. The implemented software and supporting data are available at https://github.com/GIST-CSBL/SELF-BLM.


Improving Detection of Arrhythmia Drug-Drug Interactions in Pharmacovigilance Data through the Implementation of Similarity-Based Modeling.

  • Santiago Vilar‎ et al.
  • PloS one‎
  • 2015‎

Identification of Drug-Drug Interactions (DDIs) is a significant challenge during drug development and clinical practice. DDIs are responsible for many adverse drug effects (ADEs), decreasing patient quality of life and causing higher care expenses. DDIs are not systematically evaluated in pre-clinical or clinical trials and so the FDA U. S. Food and Drug Administration relies on post-marketing surveillance to monitor patient safety. However, existing pharmacovigilance algorithms show poor performance for detecting DDIs exhibiting prohibitively high false positive rates. Alternatively, methods based on chemical structure and pharmacological similarity have shown promise in adverse drug event detection. We hypothesize that the use of chemical biology data in a post hoc analysis of pharmacovigilance results will significantly improve the detection of dangerous interactions. Our model integrates a reference standard of DDIs known to cause arrhythmias with drug similarity data. To compare similarity between drugs we used chemical structure (both 2D and 3D molecular structure), adverse drug side effects, chemogenomic targets, drug indication classes, and known drug-drug interactions. We evaluated the method on external reference standards. Our results showed an enhancement of sensitivity, specificity and precision in different top positions with the use of similarity measures to rank the candidates extracted from pharmacovigilance data. For the top 100 DDI candidates, similarity-based modeling yielded close to twofold precision enhancement compared to the proportional reporting ratio (PRR). Moreover, the method helps in the DDI decision making through the identification of the DDI in the reference standard that generated the candidate.


Clinical significance of potential drug-drug interactions in a pediatric intensive care unit: A single-center retrospective study.

  • Yu Hyeon Choi‎ et al.
  • PloS one‎
  • 2021‎

Despite the high prevalence of potential drug-drug interactions in pediatric intensive care units, their clinical relevance and significance are unclear. We assessed the characteristics and risk factors of clinically relevant potential drug-drug interactions to facilitate their efficient monitoring in pediatric intensive care units. This retrospective cohort study reviewed the medical records of 159 patients aged <19 years who were hospitalized in the pediatric intensive care unit at Seoul National University Hospital (Seoul, Korea) for ≥3 days between August 2019 and February 2020. Potential drug-drug interactions were screened using the Micromedex Drug-Reax® system. Clinical relevance of each potential drug-drug interaction was reported with official terminology, magnitude of severity, and causality, and the association with the patient's clinical characteristics was assessed. In total, 115 patients (72.3%) were exposed to 592 potential interactions of 258 drug pairs. In 16 patients (10.1%), 22 clinically relevant potential drug-drug interactions were identified for 19 drug pairs. Approximately 70% of the clinically relevant potential drug-drug interactions had a severity grade of ≥3. Exposure to potential drug-drug interactions was significantly associated with an increase in the number of administrated medications (6-7 medications, p = 0.006; ≥8, p<0.001) and prolonged hospital stays (1-2 weeks, p = 0.035; ≥2, p = 0.049). Moreover, clinically relevant potential drug-drug interactions were significantly associated with ≥8 prescribed drugs (p = 0.019), hospitalization for ≥2 weeks (p = 0.048), and ≥4 complex chronic conditions (p = 0.015). Most potential drug-drug interactions do not cause clinically relevant adverse outcomes in pediatric intensive care units. However, because the reactions that patients experience from clinically relevant potential drug-drug interactions are often very severe, there is a medical need to implement an appropriate monitoring system for potential drug-drug interactions according to the pediatric intensive care unit characteristics.


Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data.

  • Fumiyoshi Yamashita‎ et al.
  • PloS one‎
  • 2013‎

Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme using an extended least squares method that can account for inherent inter-individual variability. We also developed physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named PhysioDesigner.


A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data.

  • Hua Yu‎ et al.
  • PloS one‎
  • 2012‎

In silico prediction of drug-target interactions from heterogeneous biological data can advance our system-level search for drug molecules and therapeutic targets, which efforts have not yet reached full fruition. In this work, we report a systematic approach that efficiently integrates the chemical, genomic, and pharmacological information for drug targeting and discovery on a large scale, based on two powerful methods of Random Forest (RF) and Support Vector Machine (SVM). The performance of the derived models was evaluated and verified with internally five-fold cross-validation and four external independent validations. The optimal models show impressive performance of prediction for drug-target interactions, with a concordance of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%, respectively. The consistence of the performances of the RF and SVM models demonstrates the reliability and robustness of the obtained models. In addition, the validated models were employed to systematically predict known/unknown drugs and targets involving the enzymes, ion channels, GPCRs, and nuclear receptors, which can be further mapped to functional ontologies such as target-disease associations and target-target interaction networks. This approach is expected to help fill the existing gap between chemical genomics and network pharmacology and thus accelerate the drug discovery processes.


Prevalence of clinically manifested drug interactions in hospitalized patients: A systematic review and meta-analysis.

  • Tâmara Natasha Gonzaga de Andrade Santos‎ et al.
  • PloS one‎
  • 2020‎

This review aims to determine the prevalence of clinically manifested drug-drug interactions (DDIs) in hospitalized patients.


MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development.

  • Sahar Harati‎ et al.
  • PloS one‎
  • 2017‎

Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology. Here we introduce a computational method (MEDICI) to predict PPI essentiality by combining gene knockdown studies with network models of protein interaction pathways in an analytic framework. Our method uses network topology to model how gene silencing can disrupt PPIs, relating the unknown essentialities of individual PPIs to experimentally observed protein essentialities. This model is then deconvolved to recover the unknown essentialities of individual PPIs. We demonstrate the validity of our approach via prediction of sensitivities to compounds based on PPI essentiality and differences in essentiality based on genetic mutations. We further show that lung cancer patients have improved overall survival when specific PPIs are no longer present, suggesting that these PPIs may be potentially new targets for therapeutic development. Software is freely available at https://github.com/cooperlab/MEDICI. Datasets are available at https://ctd2.nci.nih.gov/dataPortal.


Stage-regulated GFP Expression in Trypanosoma cruzi: applications from host-parasite interactions to drug screening.

  • Rafael Luis Kessler‎ et al.
  • PloS one‎
  • 2013‎

Trypanosoma cruzi is the etiological agent of Chagas disease, an illness that affects about 10 million people, mostly in South America, for which there is no effective treatment or vaccine. In this context, transgenic parasites expressing reporter genes are interesting tools for investigating parasite biology and host-parasite interactions, with a view to developing new strategies for disease prevention and treatment. We describe here the construction of a stably transfected fluorescent T. cruzi clone in which the GFP gene is integrated into the chromosome carrying the ribosomal cistron in T. cruzi Dm28c. This fluorescent T. cruzi produces detectable amounts of GFP only at replicative stages (epimastigote and amastigote), consistent with the larger amounts of GFP mRNA detected in these forms than in the non replicative trypomastigote stages. The fluorescence signal was also strongly correlated with the total number of parasites in T. cruzi cultures, providing a simple and rapid means of determining the growth inhibitory dose of anti-T.cruzi drugs in epimastigotes, by fluorometric microplate screening, and in amastigotes, by the flow cytometric quantification of T. cruzi-infected Vero cells. This fluorescent T. cruzi clone is, thus, an interesting tool for unbiased detection of the proliferating stages of the parasite, with multiple applications in the genetic analysis of T. cruzi, including analyses of host-parasite interactions, gene expression regulation and drug development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: