Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Improving Detection of Arrhythmia Drug-Drug Interactions in Pharmacovigilance Data through the Implementation of Similarity-Based Modeling.

PloS one | 2015

Identification of Drug-Drug Interactions (DDIs) is a significant challenge during drug development and clinical practice. DDIs are responsible for many adverse drug effects (ADEs), decreasing patient quality of life and causing higher care expenses. DDIs are not systematically evaluated in pre-clinical or clinical trials and so the FDA U. S. Food and Drug Administration relies on post-marketing surveillance to monitor patient safety. However, existing pharmacovigilance algorithms show poor performance for detecting DDIs exhibiting prohibitively high false positive rates. Alternatively, methods based on chemical structure and pharmacological similarity have shown promise in adverse drug event detection. We hypothesize that the use of chemical biology data in a post hoc analysis of pharmacovigilance results will significantly improve the detection of dangerous interactions. Our model integrates a reference standard of DDIs known to cause arrhythmias with drug similarity data. To compare similarity between drugs we used chemical structure (both 2D and 3D molecular structure), adverse drug side effects, chemogenomic targets, drug indication classes, and known drug-drug interactions. We evaluated the method on external reference standards. Our results showed an enhancement of sensitivity, specificity and precision in different top positions with the use of similarity measures to rank the candidates extracted from pharmacovigilance data. For the top 100 DDI candidates, similarity-based modeling yielded close to twofold precision enhancement compared to the proportional reporting ratio (PRR). Moreover, the method helps in the DDI decision making through the identification of the DDI in the reference standard that generated the candidate.

Pubmed ID: 26068584 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM107145
  • Agency: NLM NIH HHS, United States
    Id: R01 LM006910
  • Agency: NIGMS NIH HHS, United States
    Id: T32 GM082797

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


DrugBank (tool)

RRID:SCR_002700

Bioinformatics and cheminformatics database that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.

View all literature mentions

SIDER (tool)

RRID:SCR_004321

Database containing information on marketed medicines and their recorded adverse drug reactions. The information is extracted from public documents and package inserts. The available information include side effect frequency, drug and side effect classifications as well as links to further information, for example drug-target relations. The SIDER Side Effect Resource represents an effort to aggregate dispersed public information on side effects. To our knowledge, no such resource exist in machine-readable form despite the importance of research on drugs and their effects. The creation of this resource was motivated by the many requests for data that we received related to our paper (Campillos, Kuhn et al., Science, 2008, 321(5886):263-6.) on the utilization of side effects for drug target prediction. Inclusion of side effects as readouts for drug treatment should have many applications and we hope to be able to enhance the respective research with this resource. You may browse the drugs by name, browse the side effects by name, download the current version of SIDER, or use the search interface.

View all literature mentions