Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 491 papers

Integrated diffusion image operator (iDIO): A pipeline for automated configuration and processing of diffusion MRI data.

  • Chih-Chin Heather Hsu‎ et al.
  • Human brain mapping‎
  • 2023‎

The preprocessing of diffusion magnetic resonance imaging (dMRI) data involve numerous steps, including the corrections for head motion, susceptibility distortion, low signal-to-noise ratio, and signal drifting. Researchers or clinical practitioners often need to configure different preprocessing steps depending on disparate image acquisition schemes, which increases the technical threshold for dMRI analysis for nonexpert users. This could cause disparities in data processing approaches and thus hinder the comparability between studies. To make the dMRI data processing steps transparent and adapt to various dMRI acquisition schemes for researchers, we propose a semi-automated pipeline tool for dMRI named integrated diffusion image operator or iDIO. This pipeline integrates features from a wide range of advanced dMRI software tools and targets at providing a one-click solution for dMRI data analysis, via adaptive configuration for a set of suggested processing steps based on the image header of the input data. Additionally, the pipeline provides options for post-processing, such as estimation of diffusion tensor metrics and whole-brain tractography-based connectomes reconstruction using common brain atlases. The iDIO pipeline also outputs an easy-to-interpret quality control report to facilitate users to assess the data quality. To keep the transparency of data processing, the execution log and all the intermediate images produced in the iDIO's workflow are accessible. The goal of iDIO is to reduce the barriers for clinical or nonspecialist users to adopt the state-of-art dMRI processing steps.


Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

  • Evan Calabrese‎ et al.
  • Human brain mapping‎
  • 2014‎

Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results.


Feasibility of diffusion-tensor and correlated diffusion imaging for studying white-matter microstructural abnormalities: Application in COVID-19.

  • Nick Teller‎ et al.
  • Human brain mapping‎
  • 2023‎

There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at the study initiation and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID-19 related white-matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b-values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3-month follow-up, likely due to the limited size of the follow-up cohort. To summarize, correlated diffusion imaging is shown to be a viable single-shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.


DCP: A pipeline toolbox for diffusion connectome.

  • Weijie Huang‎ et al.
  • Human brain mapping‎
  • 2024‎

The brain structural network derived from diffusion magnetic resonance imaging (dMRI) reflects the white matter connections between brain regions, which can quantitatively describe the anatomical connection pattern of the entire brain. The development of structural brain connectome leads to the emergence of a large number of dMRI processing packages and network analysis toolboxes. However, the fully automated network analysis based on dMRI data remains challenging. In this study, we developed a cross-platform MATLAB toolbox named "Diffusion Connectome Pipeline" (DCP) for automatically constructing brain structural networks and calculating topological attributes of the networks. The toolbox integrates a few developed packages, including FSL, Diffusion Toolkit, SPM, Camino, MRtrix3, and MRIcron. It can process raw dMRI data collected from any number of participants, and it is also compatible with preprocessed files from public datasets such as HCP and UK Biobank. Moreover, a friendly graphical user interface allows users to configure their processing pipeline without any programming. To prove the capacity and validity of the DCP, two tests were conducted with using DCP. The results showed that DCP can reproduce the findings in our previous studies. However, there are some limitations of DCP, such as relying on MATLAB and being unable to fixel-based metrics weighted network. Despite these limitations, overall, the DCP software provides a standardized, fully automated computational workflow for white matter network construction and analysis, which is beneficial for advancing future human brain connectomics application research.


Detection of Alzheimer's Disease using cortical diffusion tensor imaging.

  • Mario Torso‎ et al.
  • Human brain mapping‎
  • 2021‎

The aim of this research was to test a novel in-vivo brain MRI analysis method that could be used in clinical cohorts to investigate cortical architecture changes in patients with Alzheimer's Disease (AD). Three cohorts of patients with probable AD and healthy volunteers were used to assess the results of the method. The first group was used as the "Discovery" cohort, the second as the "Test" cohort and the last "ATN" (Amyloid, Tau, Neurodegeneration) cohort was used to test the method in an ADNI 3 cohort, comparing to amyloid and Tau PET. The method can detect altered quality of cortical grey matter in AD patients, providing an additional tool to assess AD, distinguishing between these and healthy controls with an accuracy range between good and excellent. These new measurements could be used within the "ATN" framework as an index of cortical microstructure quality and a marker of Neurodegeneration. Further development may aid diagnosis, patient selection, and quantification of the "Neurodegeneration" component in response to therapies in clinical trials.


Harmonization of diffusion MRI data sets with adaptive dictionary learning.

  • Samuel St-Jean‎ et al.
  • Human brain mapping‎
  • 2020‎

Diffusion magnetic resonance imaging can indirectly infer the microstructure of tissues and provide metrics subject to normal variability in a population. Potentially abnormal values may yield essential information to support analysis of controls and patients cohorts, but subtle confounds could be mistaken for purely biologically driven variations amongst subjects. In this work, we propose a new harmonization algorithm based on adaptive dictionary learning to mitigate the unwanted variability caused by different scanner hardware while preserving the natural biological variability of the data. Our harmonization algorithm does not require paired training data sets, nor spatial registration or matching spatial resolution. Overcomplete dictionaries are learned iteratively from all data sets at the same time with an adaptive regularization criterion, removing variability attributable to the scanners in the process. The obtained mapping is applied directly in the native space of each subject toward a scanner-space. The method is evaluated with a public database which consists of two different protocols acquired on three different scanners. Results show that the effect size of the four studied diffusion metrics is preserved while removing variability attributable to the scanner. Experiments with alterations using a free water compartment, which is not simulated in the training data, shows that the modifications applied to the diffusion weighted images are preserved in the diffusion metrics after harmonization, while still reducing global variability at the same time. The algorithm could help multicenter studies pooling their data by removing scanner specific confounds, and increase statistical power in the process.


Towards an optimised processing pipeline for diffusion magnetic resonance imaging data: Effects of artefact corrections on diffusion metrics and their age associations in UK Biobank.

  • Ivan I Maximov‎ et al.
  • Human brain mapping‎
  • 2019‎

Increasing interest in the structural and functional organisation of the human brain encourages the acquisition of big data sets comprising multiple neuroimaging modalities, often accompanied by additional information obtained from health records, cognitive tests, biomarkers and genotypes. Diffusion weighted magnetic resonance imaging data enables a range of promising imaging phenotypes probing structural connections as well as macroanatomical and microstructural properties of the brain. The reliability and biological sensitivity and specificity of diffusion data depend on processing pipeline. A state-of-the-art framework for data processing facilitates cross-study harmonisation and reduces pipeline-related variability. Using diffusion magnetic resonance imaging (MRI) data from 218 individuals in the UK Biobank, we evaluate the effects of different processing steps that have been suggested to reduce imaging artefacts and improve reliability of diffusion metrics. In lack of a ground truth, we compared diffusion metric sensitivity to age between pipelines. By comparing distributions and age sensitivity of the resulting diffusion metrics based on different approaches (diffusion tensor imaging, diffusion kurtosis imaging and white matter tract integrity), we evaluate a general pipeline comprising seven postprocessing blocks: noise correction; Gibbs ringing correction; evaluation of field distortions; susceptibility, eddy-current and motion-induced distortion corrections; bias field correction; spatial smoothing and final diffusion metric estimations. Based on this evaluation, we suggest an optimised processing pipeline for diffusion weighted MRI data.


Diffusion weighted imaging of prefrontal cortex in prodromal Huntington's disease.

  • Joy T Matsui‎ et al.
  • Human brain mapping‎
  • 2014‎

Huntington's disease (HD) is a devastating neurodegenerative disease with no effective disease-modifying treatments. There is considerable interest in finding reliable indicators of disease progression to judge the efficacy of novel treatments that slow or stop disease onset before debilitating signs appear. Diffusion-weighted imaging (DWI) may provide a reliable marker of disease progression by characterizing diffusivity changes in white matter (WM) in individuals with prodromal HD. The prefrontal cortex (PFC) may play a role in HD progression due to its prominent striatal connections and documented role in executive function. This study uses DWI to characterize diffusivity in specific regions of PFC WM defined by FreeSurfer in 53 prodromal HD participants and 34 controls. Prodromal HD individuals were separated into three CAG-Age Product (CAP) groups (16 low, 22 medium, 15 high) that indexed baseline progression. Statistically significant increases in mean diffusivity (MD) and radial diffusivity (RD) among CAP groups relative to controls were seen in inferior and lateral PFC regions. For MD and RD, differences among controls and HD participants tracked with baseline disease progression. The smallest difference was for the low group and the largest for the high group. Significant correlations between Trail Making Test B (TMTB) and mean fractional anisotropy (FA) and/or RD paralleled group differences in mean MD and/or RD in several right hemisphere regions. The gradient of effects that tracked with CAP group suggests DWI may provide markers of disease progression in future longitudinal studies as increasing diffusivity abnormalities in the lateral PFC of prodromal HD individuals.


Diffusion tensor image registration using hybrid connectivity and tensor features.

  • Qian Wang‎ et al.
  • Human brain mapping‎
  • 2014‎

Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone.


Prior-guided individualized thalamic parcellation based on local diffusion characteristics.

  • Chaohong Gao‎ et al.
  • Human brain mapping‎
  • 2024‎

Comprising numerous subnuclei, the thalamus intricately interconnects the cortex and subcortex, orchestrating various facets of brain functions. Extracting personalized parcellation patterns for these subnuclei is crucial, as different thalamic nuclei play varying roles in cognition and serve as therapeutic targets for neuromodulation. However, accurately delineating the thalamic nuclei boundary at the individual level is challenging due to intersubject variability. In this study, we proposed a prior-guided parcellation (PG-par) method to achieve robust individualized thalamic parcellation based on a central-boundary prior. We first constructed probabilistic atlas of thalamic nuclei using high-quality diffusion MRI datasets based on the local diffusion characteristics. Subsequently, high-probability voxels in the probabilistic atlas were utilized as prior guidance to train unique multiple classification models for each subject based on a multilayer perceptron. Finally, we employed the trained model to predict the parcellation labels for thalamic voxels and construct individualized thalamic parcellation. Through a test-retest assessment, the proposed prior-guided individualized thalamic parcellation exhibited excellent reproducibility and the capacity to detect individual variability. Compared with group atlas registration and individual clustering parcellation, the proposed PG-par demonstrated superior parcellation performance under different scanning protocols and clinic settings. Furthermore, the prior-guided individualized parcellation exhibited better correspondence with the histological staining atlas. The proposed prior-guided individualized thalamic parcellation method contributes to the personalized modeling of brain parcellation.


Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers.

  • Babak A Ardekani‎ et al.
  • Human brain mapping‎
  • 2011‎

The objective of this research was to determine whether fractional anisotropy (FA) and mean diffusivity (MD) maps derived from diffusion tensor imaging (DTI) of the brain are able to reliably differentiate patients with schizophrenia from healthy volunteers. DTI and high resolution structural magnetic resonance scans were acquired in 50 patients with schizophrenia and 50 age- and sex-matched healthy volunteers. FA and MD maps were estimated from the DTI data and spatially normalized to the Montreal Neurologic Institute standard stereotactic space. Individuals were divided randomly into two groups of 50, a training set, and a test set, each comprising 25 patients and 25 healthy volunteers. A pattern classifier was designed using Fisher's linear discriminant analysis (LDA) based on the training set of images to categorize individuals in the test set as either patients or healthy volunteers. Using the FA maps, the classifier correctly identified 94% of the cases in the test set (96% sensitivity and 92% specificity). The classifier achieved 98% accuracy (96% sensitivity and 100% specificity) when using the MD maps as inputs to distinguish schizophrenia patients from healthy volunteers in the test dataset. Utilizing FA and MD data in combination did not significantly alter the accuracy (96% sensitivity and specificity). Patterns of water self-diffusion in the brain as estimated by DTI can be used in conjunction with automated pattern recognition algorithms to reliably distinguish between patients with schizophrenia and normal control subjects.


Widespread effects of dMRI data quality on diffusion measures in children.

  • Nabin Koirala‎ et al.
  • Human brain mapping‎
  • 2022‎

Diffusion magnetic resonance imaging (dMRI) datasets are susceptible to several confounding factors related to data quality, which is especially true in studies involving young children. With the recent trend of large-scale multicenter studies, it is more critical to be aware of the varied impacts of data quality on measures of interest. Here, we investigated data quality and its effect on different diffusion measures using a multicenter dataset. dMRI data were obtained from 691 participants (5-17 years of age) from six different centers. Six data quality metrics-contrast to noise ratio, outlier slices, and motion (absolute, relative, translation, and rotational)-and four diffusion measures-fractional anisotropy, mean diffusivity, tract density, and length-were computed for each of 36 major fiber tracts for all participants. The results indicated that four out of six data quality metrics (all except absolute and translation motion) differed significantly between centers. Associations between these data quality metrics and the diffusion measures differed significantly across the tracts and centers. Moreover, these effects remained significant after applying recently proposed harmonization algorithms that purport to remove unwanted between-site variation in diffusion data. These results demonstrate the widespread impact of dMRI data quality on diffusion measures. These tracts and measures have been routinely associated with individual differences as well as group-wide differences between neurotypical populations and individuals with neurological or developmental disorders. Accordingly, for analyses of individual differences or group effects (particularly in multisite dataset), we encourage the inclusion of data quality metrics in dMRI analysis.


Multishell diffusion MRI reveals whole-brain white matter changes in HIV.

  • Silvia Minosse‎ et al.
  • Human brain mapping‎
  • 2023‎

Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) have been previously used to explore white matter related to human immunodeficiency virus (HIV) infection. While DTI and DKI suffer from low specificity, the Combined Hindered and Restricted Model of Diffusion (CHARMED) provides additional microstructural specificity. We used these three models to evaluate microstructural differences between 35 HIV-positive patients without neurological impairment and 20 healthy controls who underwent diffusion-weighted imaging using three b-values. While significant group effects were found in all diffusion metrics, CHARMED and DKI analyses uncovered wider involvement (80% vs. 20%) of all white matter tracts in HIV infection compared with DTI. In restricted fraction (FR) analysis, we found significant differences in the left corticospinal tract, middle cerebellar peduncle, right inferior cerebellar peduncle, right corticospinal tract, splenium of the corpus callosum, left superior cerebellar peduncle, left superior cerebellar peduncle, pontine crossing tract, left posterior limb of the internal capsule, and left/right medial lemniscus. These are involved in language, motor, equilibrium, behavior, and proprioception, supporting the functional integration that is frequently impaired in HIV-positivity. Additionally, we employed a machine learning algorithm (XGBoost) to discriminate HIV-positive patients from healthy controls using DTI and CHARMED metrics on an ROIwise basis, and unique contributions to this discrimination were examined using Shapley Explanation values. The CHARMED and DKI estimates produced the best performance. Our results suggest that biophysical multishell imaging, combining additional sensitivity and built-in specificity, provides further information about the brain microstructural changes in multimodal areas involved in attentive, emotional and memory networks often impaired in HIV patients.


Mesoscale diffusion magnetic resonance imaging of the ex vivo human hippocampus.

  • Maria Ly‎ et al.
  • Human brain mapping‎
  • 2020‎

Mesoscale diffusion magnetic resonance imaging (MRI) endeavors to bridge the gap between macroscopic white matter tractography and microscopic studies investigating the cytoarchitecture of human brain tissue. To ensure a robust measurement of diffusion at the mesoscale, acquisition parameters were arrayed to investigate their effects on scalar indices (mean, radial, axial diffusivity, and fractional anisotropy) and streamlines (i.e., graphical representation of axonal tracts) in hippocampal layers. A mesoscale resolution afforded segementation of the pyramidal cell layer (CA1-4), the dentate gyrus, as well as stratum moleculare, radiatum, and oriens. Using ex vivo samples, surgically excised from patients with intractable epilepsy (n = 3), we found that shorter diffusion times (23.7 ms) with a b-value of 4,000 s/mm2 were advantageous at the mesoscale, providing a compromise between mean diffusivity and fractional anisotropy measurements. Spatial resolution and sample orientation exerted a major effect on tractography, whereas the number of diffusion gradient encoding directions minimally affected scalar indices and streamline density. A sample temperature of 15°C provided a compromise between increasing signal-to-noise ratio and increasing the diffusion properties of the tissue. Optimization of the acquisition afforded a system's view of intra- and extra-hippocampal connections. Tractography reflected histological boundaries of hippocampal layers. Individual layer connectivity was visualized, as well as streamlines emanating from individual sub-fields. The perforant path, subiculum and angular bundle demonstrated extra-hippocampal connections. Histology of the samples confirmed individual cell layers corresponding to ROIs defined on MR images. We anticipate that this ex vivo mesoscale imaging will yield novel insights into human hippocampal connectivity.


Diffusion tensor imaging brain structural clustering patterns in major depressive disorder.

  • Dongrong Xu‎ et al.
  • Human brain mapping‎
  • 2021‎

Using magnetic resonance diffusion tensor imaging data from 45 patients with major depressive disorder (MDD) and 41 healthy controls (HCs), network indices based on a 246-region Brainnetcome Atlas were investigated in the two groups, and in the MDD subgroups that were subgrouped based on their duration of the disease. Correlation between the network indices and the duration of illness was also examined. Differences were observed between the MDDS subgroup (short disease duration) and the HC group, but not between the MDD and HC groups. Compared with the HCs, the clustering coefficient (CC) values of MDDS were higher in precentral gyrus, and caudal lingual gyrus; the CC of MDDL subgroup (long disease duration) was higher in postcentral gyrus and dorsal granular insula in the right hemisphere. Network resilience analyses showed that the MDDS group was higher than the HC group, representing relatively more randomized networks in the diseased brains. The correlation analyses showed that the caudal lingual gyrus in the right hemisphere and the rostral lingual gyrus in the left hemisphere were particularly correlated with disease duration. The analyses showed that duration of the illness appears to have an impact on the networking patterns. Networking abnormalities in MDD patients could be blurred or hidden by the heterogeneity of the MDD clinical subgroups. Brain plasticity may introduce a recovery effect to the abnormal network patterns seen in patients with a relative short term of the illness, as the abnormalities may disappear in MDDL .


Evaluating the arcuate fasciculus with combined diffusion-weighted MRI tractography and electrocorticography.

  • Erik C Brown‎ et al.
  • Human brain mapping‎
  • 2014‎

The conventional model of language-related brain structure describing the arcuate fasciculus as a key white matter tract providing a direct connection between Wernicke's region and Broca's area has been called into question. Specifically, the inferior precentral gyrus, possessing both primary motor (Brodmann Area [BA] 4) and premotor cortex (BA 6), has been identified as a potential alternative termination. The authors initially localized cortical sites involved in language using measurement of event-related gamma-activity on electrocorticography (ECoG). The authors then determined whether language-related sites of the temporal lobe were connected, via white matter structures, to the inferior frontal gyrus more tightly than to the precentral gyrus. The authors found that language-related sites of the temporal lobe were far more likely to be directly connected to the inferior precentral gyrus through the arcuate fasciculus. Furthermore, tractography was a significant predictor of frontal language-related ECoG findings. Analysis of an interaction between anatomy and tractography in this model revealed tractrography to have the highest predictive value for language-related ECoG findings of the precentral gyrus. This study failed to support the conventional model of language-related brain structure. More feasible models should include the inferior precentral gyrus as a termination of the arcuate fasciculus. The exact functional significance of direct connectivity between temporal language-related sites and the precentral gyrus requires further study.


Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling.

  • Björn Lampinen‎ et al.
  • Human brain mapping‎
  • 2019‎

In vivo mapping of the neurite density with diffusion MRI (dMRI) is a high but challenging aim. First, it is unknown whether all neurites exhibit completely anisotropic ("stick-like") diffusion. Second, the "density" of tissue components may be confounded by non-diffusion properties such as T2 relaxation. Third, the domain of validity for the estimated parameters to serve as indices of neurite density is incompletely explored. We investigated these challenges by acquiring data with "b-tensor encoding" and multiple echo times in brain regions with low orientation coherence and in white matter lesions. Results showed that microscopic anisotropy from b-tensor data is associated with myelinated axons but not with dendrites. Furthermore, b-tensor data together with data acquired for multiple echo times showed that unbiased density estimates in white matter lesions require data-driven estimates of compartment-specific T2 values. Finally, the "stick" fractions of different biophysical models could generally not serve as neurite density indices across the healthy brain and white matter lesions, where outcomes of comparisons depended on the choice of constraints. In particular, constraining compartment-specific T2 values was ambiguous in the healthy brain and had a large impact on estimated values. In summary, estimating neurite density generally requires accounting for different diffusion and/or T2 properties between axons and dendrites. Constrained "index" parameters could be valid within limited domains that should be delineated by future studies.


Heritability of complex white matter diffusion traits assessed in a population isolate.

  • Peter Kochunov‎ et al.
  • Human brain mapping‎
  • 2016‎

Diffusion weighted imaging (DWI) methods can noninvasively ascertain cerebral microstructure by examining pattern and directions of water diffusion in the brain. We calculated heritability for DWI parameters in cerebral white (WM) and gray matter (GM) to study the genetic contribution to the diffusion signals across tissue boundaries.


Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging.

  • Robert Lindenberg‎ et al.
  • Human brain mapping‎
  • 2012‎

Electrophysiological and neuroimaging studies suggest that the integrity of ipsilesional and inter-hemispheric motor circuits is important for motor recovery after stroke. However, the extent to which each of these tracts contributes to the variance in outcome remains unclear. We examined whether diffusion tensor imaging (DTI)-derived measures of corticospinal and transcallosal tracts predict motor improvement in an experimental neurorehabilitation trial. 15 chronic stroke patients received bihemispheric transcranial direct current stimulation and simultaneous physical/occupational therapy for five consecutive days. Motor impairment was assessed prior to and after the intervention. At baseline, the patients underwent DTI; probabilistic fiber tracking was used to reconstruct the pyramidal tract (PT), alternate descending motor fibers (aMF), and transcallosal fibers connecting primary motor cortices (M1-M1). Ipsilesional corticospinal tracts (PT, aMF) and M1-M1 showed significantly decreased fractional anisotropy (FA) and increased directional diffusivities when compared to age-matched healthy controls. Partial correlations revealed that greater gains in motor function were related to higher FA values and lower directional diffusivities of transcallosal and ipsilesional corticospinal tracts. M1-M1 diffusivity had the greatest predictive value. An additional slice-by-slice analysis of FA values along the corticospinal tracts demonstrated that the more the ipsilesional FA profiles of patients resembled those of healthy controls, the greater their functional improvement. In conclusion, our study shows that DTI-derived measures can be used to predict functional potential for subsequent motor recovery in chronic stroke patients. Diffusivity parameters of individual tracts and tract combinations may help in assessing a patient's individual recovery potential and in determining optimal neurorehabilitative interventions.


Angular versus spatial resolution trade-offs for diffusion imaging under time constraints.

  • Liang Zhan‎ et al.
  • Human brain mapping‎
  • 2013‎

Diffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to consider what scanning parameters affect the accuracy, stability, and signal-to-noise of diffusion measures. Trade-offs between scan parameters can only be optimized if their effects on various commonly-derived measures are better understood. To explore angular versus spatial resolution trade-offs in standard tensor-derived measures, and in measures that use the full angular information in diffusion signal, we scanned eight subjects twice, 2 weeks apart, using three protocols that took the same amount of time (7 min). Scans with 3.0, 2.7, 2.5 mm isotropic voxels were collected using 48, 41, and 37 diffusion-sensitized gradients to equalize scan times. A specially designed DTI phantom was also scanned with the same protocols, and different b-values. We assessed how several diffusion measures including fractional anisotropy (FA), mean diffusivity (MD), and the full 3D orientation distribution function (ODF) depended on the spatial/angular resolution and the SNR. We also created maps of stability over time in the FA, MD, ODF, skeleton FA of 14 TBSS-derived ROIs, and an information uncertainty index derived from the tensor distribution function, which models the signal using a continuous mixture of tensors. In scans of the same duration, higher angular resolution and larger voxels boosted SNR and improved stability over time. The increased partial voluming in large voxels also led to bias in estimating FA, but this was partially addressed by using "beyond-tensor" models of diffusion.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: