Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

Human brain mapping | 2014

Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results.

Pubmed ID: 25044786 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIA NIH HHS, United States
    Id: K01 AG041211
  • Agency: NCRR NIH HHS, United States
    Id: RR000167
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH091645
  • Agency: NIH HHS, United States
    Id: P51 OD011106
  • Agency: NCRR NIH HHS, United States
    Id: P51 RR000167
  • Agency: NIBIB NIH HHS, United States
    Id: P41 EB015897

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


TrackVis (tool)

RRID:SCR_004817

TrackVis is software tool that can visualize and analyze fiber track data from diffusion MR imaging (DTI/DSI/HARDI/Q-Ball) tractography. It does NOT perform actual fiber tracking. Diffusion Toolkit is a set of tools that reconstruct diffusion imaging data and generate fiber track data for TrackVis to visualize. Because these two sets of tools were developed and maintained separately and each has distinguished funtionalities, they decided to distribute them as two separate programs for the ease of maintenance and upgrade. You do need both of them to perform complete diffusion data processing and analysis. Features of TrackVis include: * Cross-platform. Works on Windows, Mac OS X and Linux with native look and feel. * A variety of track filters (track selecting methods) allowing users to explore and locate specific bundles with ease. * Multiple rendering modes with customizable scalar-driven color codes. * Real-time parameter adjustment and 3D render. * Open format of the track data file allowing users to integrate customized scalar data into the track file and visualize and analyze it. Save and restore scenes in XML style scene file. * Statistical scalar analysis of tracks and ROIs. * Synchronized real-time multiple dataset analysis and display allowing time-point and/or subject comparison. Synchronized analysis and display on same dataset can also be performed in real-time remotely over the network. * Upfront in-line parameter adjustment in real-time. No tedious pop-up dialogs. TrackVis works with Track File created by Diffusion Toolkit. Diffusion Toolkit processes raw DICOM, Nifti format and ANALYZE images. TrackVis and Diffusion Toolkit are cross-platform software. They can run on Windows XP, Mac OS X as well as Linux.

View all literature mentions