Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 426 papers

Target of obstructive sleep apnea syndrome merge lung cancer: based on big data platform.

  • Lifeng Li‎ et al.
  • Oncotarget‎
  • 2017‎

Based on our hospital database, the incidence of lung cancer diagnoses was similar in obstructive sleep apnea Syndrome (OSAS) and hospital general population; among individual with a diagnosis of lung cancer, the presence of OSAS was associated with an increased risk for mortality. In the gene expression and network-level information, we revealed significant alterations of molecules related to HIF1 and metabolic pathways in the hypoxic-conditioned lung cancer cells. We also observed that GBE1 and HK2 are downstream of HIF1 pathway important in hypoxia-conditioned lung cancer cell. Furthermore, we used publicly available datasets to validate that the late-stage lung adenocarcinoma patients showed higher expression HK2 and GBE1 than early-stage ones. In terms of prognostic features, a survival analysis revealed that the high GBE1 and HK2 expression group exhibited poorer survival in lung adenocarcinoma patients. By analyzing and integrating multiple datasets, we identify molecular convergence between hypoxia and lung cancer that reflects their clinical profiles and reveals molecular pathways involved in hypoxic-induced lung cancer progression. In conclusion, we show that OSAS severity appears to increase the risk of lung cancer mortality.


Elevated heparanase expression is associated with poor prognosis in breast cancer: a study based on systematic review and TCGA data.

  • Xu Sun‎ et al.
  • Oncotarget‎
  • 2017‎

Heparanase promotes tumorigenesis, angiogenesis, and metastasis. Here, we conducted a study based on systematic review and the Cancer Genome Atlas (TCGA) data that examined heparanase expression in clinical samples to determine its prognostic value. According to the meta-analysis and TCGA data, we found that heparanase expression was up-regulated in most breast cancer specimens, and elevated heparanase expression was associated with increased lymph node metastasis, larger tumor size, higher histological grade, and poor survival. These results suggest that targeting heparanase might improve treatments for breast cancer patients.


Comprehensive analysis of single-cell and bulk RNA-sequencing data identifies B cell marker genes signature that predicts prognosis and analysis of immune checkpoints expression in head and neck squamous cell carcinoma.

  • Dilinaer Wusiman‎ et al.
  • Heliyon‎
  • 2023‎

Recent studies have shown that B cells and the associated tertiary lymphoid structures (TLS) correlate with the response of patients to immune checkpoint inhibitors (ICIs) and predict overall survival (OS) in cancer patients. We screened 145 B cell marker genes (BCMG) by a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of head and neck squamous cell carcinoma (HNSC) from the Gene Expression Omnibus (GEO) database. The BCMG signature (BCMGS) was established using The Cancer Genome Atlas (TCGA) dataset of HNSC and verified in four independent datasets. The multivariate Cox regression analysis identified the signature as an independent prognostic factor. A prognostic nomogram was constructed with independent prognostic factors using the TCGA dataset. GO and KEGG analysis revealed the underlying signaling pathways related to this signature. Study of immune profiles showed that patients in the low-risk group presented discriminative immune-cell infiltrations. Furthermore, the low-risk group was featured by higher TCR and BCR diversity, which suggested that low-risk patients may be more sensitive to ICIs. Immunohistochemistry was performed, and we found that high expression of FTH1 was significantly correlated with poor OS (P = 0.025). The expression of TIM-3, LAG-3 and PD-1 was positively correlated and associated with better OS in HNSC. However, there was no statistically significant difference between PD-L1, PD-L2, CTLA-4, TIGIT and prognosis. The BCMGS was a promising prognostic biomarker in HNSC, which may help to interpret the responses to immunotherapy and provide a new perspective for future research on the treatment in HNSC.


TISMO: syngeneic mouse tumor database to model tumor immunity and immunotherapy response.

  • Zexian Zeng‎ et al.
  • Nucleic acids research‎
  • 2022‎

Syngeneic mouse models are tumors derived from murine cancer cells engrafted on genetically identical mouse strains. They are widely used tools for studying tumor immunity and immunotherapy response in the context of a fully functional murine immune system. Large volumes of syngeneic mouse tumor expression profiles under different immunotherapy treatments have been generated, although a lack of systematic collection and analysis makes data reuse challenging. We present Tumor Immune Syngeneic MOuse (TISMO), a database with an extensive collection of syngeneic mouse model profiles with interactive visualization features. TISMO contains 605 in vitro RNA-seq samples from 49 syngeneic cancer cell lines across 23 cancer types, of which 195 underwent cytokine treatment. TISMO also includes 1518 in vivo RNA-seq samples from 68 syngeneic mouse tumor models across 19 cancer types, of which 832 were from immune checkpoint blockade (ICB) studies. We manually annotated the sample metadata, such as cell line, mouse strain, transplantation site, treatment, and response status, and uniformly processed and quality-controlled the RNA-seq data. Besides data download, TISMO provides interactive web interfaces to investigate whether specific gene expression, pathway enrichment, or immune infiltration level is associated with differential immunotherapy response. TISMO is available at http://tismo.cistrome.org.


In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target.

  • Xiaoqing Wang‎ et al.
  • Cell‎
  • 2021‎

Despite remarkable clinical efficacy of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits for triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that deletion of the E3 ubiquitin ligase Cop1 in cancer cells decreases secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, enhances anti-tumor immunity, and strengthens ICB response. Transcriptomics, epigenomics, and proteomics analyses revealed that Cop1 functions through proteasomal degradation of the C/ebpδ protein. The Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. In addition, deletion of the E3 ubiquitin ligase Cop1 in cancer cells stabilizes C/ebpδ to suppress expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy in TNBC by regulating chemokine secretion and macrophage infiltration in the tumor microenvironment.


ScholarCitation: Chinese Scholar Citation Analysis Based on ScholarSpace in the Field of Computer Science.

  • Hanting Su‎ et al.
  • Frontiers in big data‎
  • 2019‎

Citation analysis is one of the most commonly used methods in academic assessments. Up to now, most of academic assessments are based on English literature, ignoring the fact that the role of Chinese papers in academic assessments has become increasingly indispensable. Therefore, to give full play to the role of Chinese literature in academic assessments is an urgent task of current academic circle. Based on Chinese academic data from ScholarSpace, i.e., 82826 Chinese computer science journal papers, we conduct a comprehensive assessment of academic influence from the perspectives of fields, journals and institutions, in order to achieve a better understanding of the development of Chinese computer literature in the past 60 years. We find that Chinese scholars tend to cite papers in English, discover evolution trend of fields, journals and institutions, and call on journals, institutions, and scholars to strengthen their cooperation.


MetaTiME integrates single-cell gene expression to characterize the meta-components of the tumor immune microenvironment.

  • Yi Zhang‎ et al.
  • Nature communications‎
  • 2023‎

Recent advances in single-cell RNA sequencing have shown heterogeneous cell types and gene expression states in the non-cancerous cells in tumors. The integration of multiple scRNA-seq datasets across tumors can indicate common cell types and states in the tumor microenvironment (TME). We develop a data driven framework, MetaTiME, to overcome the limitations in resolution and consistency that result from manual labelling using known gene markers. Using millions of TME single cells, MetaTiME learns meta-components that encode independent components of gene expression observed across cancer types. The meta-components are biologically interpretable as cell types, cell states, and signaling activities. By projecting onto the MetaTiME space, we provide a tool to annotate cell states and signature continuums for TME scRNA-seq data. Leveraging epigenetics data, MetaTiME reveals critical transcriptional regulators for the cell states. Overall, MetaTiME learns data-driven meta-components that depict cellular states and gene regulators for tumor immunity and cancer immunotherapy.


Machine Learning Modeling of Protein-intrinsic Features Predicts Tractability of Targeted Protein Degradation.

  • Wubing Zhang‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2022‎

Targeted protein degradation (TPD) has rapidly emerged as a therapeutic modality to eliminate previously undruggable proteins by repurposing the cell's endogenous protein degradation machinery. However, the susceptibility of proteins for targeting by TPD approaches, termed "degradability", is largely unknown. Here, we developed a machine learning model, model-free analysis of protein degradability (MAPD), to predict degradability from features intrinsic to protein targets. MAPD shows accurate performance in predicting kinases that are degradable by TPD compounds [with an area under the precision-recall curve (AUPRC) of 0.759 and an area under the receiver operating characteristic curve (AUROC) of 0.775] and is likely generalizable to independent non-kinase proteins. We found five features with statistical significance to achieve optimal prediction, with ubiquitination potential being the most predictive. By structural modeling, we found that E2-accessible ubiquitination sites, but not lysine residues in general, are particularly associated with kinase degradability. Finally, we extended MAPD predictions to the entire proteome to find 964 disease-causing proteins (including proteins encoded by 278 cancer genes) that may be tractable to TPD drug development.


Positive Selection and Duplication of Bat TRIM Family Proteins.

  • Jiazheng Xie‎ et al.
  • Viruses‎
  • 2023‎

Bats have received increasing attention because of some unique biological features they possess. TRIM is a large family of proteins that participate in diverse cellular functions, such as antiviral immunity, DNA damage repair, tumor suppression, and aging. These functional areas appear to be highly consistent with the special characteristics of bats, such as tolerance to viruses and DNA damage generated in flight, low cancer incidence, and longevity. However, there is still a lack of systematic study of the TRIM family in bats. Here, we explored the TRIM family of bats using the genomes of 16 representative species. The results showed that the bat TRIM family contains 70 members, with 24 under positive selection and 7 duplicated. Additional transcriptomic analysis revealed the tissue-specific expressions of TRIM9, 46, 54, 55, 63, and 72. Additionally, following interferon or viral stimulation, TRIM orthologs associated with antiviral immunity reported in humans were also upregulated in bat cells. The present study systematically analyzed the composition, evolution, and expression of bat TRIM genes. It may provide a theoretical basis for studies of bat TRIM in the fields of antiviral immunity, longevity, and tolerance to DNA damage.


Lack of evolutionary changes identified in SARS-CoV-2 for the re-emerging outbreak of COVID-19 in Beijing, China.

  • Yang Li‎ et al.
  • Biosafety and health‎
  • 2022‎

Although significant achievements have shown that the coronavirus disease 2019 (COVID-19) resurgence in Beijing, China, was initiated by contaminated frozen products and transported via cold chain transportation, international travelers with asymptomatic symptoms or false-negative nucleic acid may have another possible transmission mode that spread the virus to Beijing. One of the key differences between these two assumptions was whether the virus actively replicated since, so far, no reports showed viruses could stop evolution in alive hosts. We studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences in this outbreak by a modified leaf-dating method with the Bayes factor. The numbers of single nucleotide variants (SNVs) found in SARS-CoV-2 sequences were significantly lower than those called from B.1.1 records collected at the matching time worldwide (P = 0.047). In addition, results of the leaf-dating method showed ages of viruses sampled from this outbreak were earlier than their recorded dates of collection (Bayes factors > 10), while control sequences (selected randomly with ten replicates) showed no differences in their collection dates (Bayes factors < 10). Our results which indicated that the re-emergence of SARS-CoV-2 in Beijing in June 2020 was caused by a virus that exhibited a lack of evolutionary changes compared to viruses collected at the corresponding time, provided evolutionary evidence to the contaminated imported frozen food should be responsible for the reappearance of COVID-19 cases in Beijing. The method developed here might also be helpful to provide the very first clues for potential sources of COVID-19 cases in the future.


Checkpoint blockade-induced CD8+ T cell differentiation in head and neck cancer responders.

  • Liye Zhou‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Immune checkpoint blockade (ICB) response in recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) is limited to 15%-20% of patients and underpinnings of resistance remain undefined.


Multi-Omics Profiling Suggesting Intratumoral Mast Cells as Predictive Index of Breast Cancer Lung Metastasis.

  • Leyi Zhang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Breast cancer lung metastasis has a high mortality rate and lacks effective treatments, for the factors that determine breast cancer lung metastasis are not yet well understood. In this study, data from 1067 primary tumors in four public datasets revealed the distinct microenvironments and immune composition among patients with or without lung metastasis. We used multi-omics data of the TCGA cohort to emphasize the following characteristics that may lead to lung metastasis: more aggressive tumor malignant behaviors, severer genomic instability, higher immunogenicity but showed generalized inhibition of effector functions of immune cells. Furthermore, we found that mast cell fraction can be used as an index for individual lung metastasis status prediction and verified in the 20 human breast cancer samples. The lower mast cell infiltrations correlated with tumors that were more malignant and prone to have lung metastasis. This study is the first comprehensive analysis of the molecular and cellular characteristics and mutation profiles of breast cancer lung metastasis, which may be applicable for prognostic prediction and aid in choosing appropriate medical examinations and therapeutic regimens.


Influence of safety warnings on ESA prescribing among dialysis patients using an interrupted time series.

  • Mae Thamer‎ et al.
  • BMC nephrology‎
  • 2013‎

In March, 2007, a black box warning was issued by the Food and Drug Administration (FDA) to use the lowest possible erythropoiesis-stimulating agents (ESA) doses for treatment of anemia associated with renal disease. The goal is to determine if a change in ESA use was observed following the warning among US dialysis patients.


A Novel Coronavirus (COVID-19) Outbreak: A Call for Action.

  • Yi Zhang‎ et al.
  • Chest‎
  • 2020‎

No abstract available


Tibetan Medical informatics: An emerging field in Sowa Rigpa pharmacological & clinical research.

  • Wüntrang Dhondrup‎ et al.
  • Journal of ethnopharmacology‎
  • 2020‎

No abstract available


Crosstalk in oxygen homeostasis networks: SKN-1/NRF inhibits the HIF-1 hypoxia-inducible factor in Caenorhabditis elegans.

  • Dingxia Feng‎ et al.
  • PloS one‎
  • 2021‎

During development, homeostasis, and disease, organisms must balance responses that allow adaptation to low oxygen (hypoxia) with those that protect cells from oxidative stress. The evolutionarily conserved hypoxia-inducible factors are central to these processes, as they orchestrate transcriptional responses to oxygen deprivation. Here, we employ genetic strategies in C. elegans to identify stress-responsive genes and pathways that modulate the HIF-1 hypoxia-inducible factor and facilitate oxygen homeostasis. Through a genome-wide RNAi screen, we show that RNAi-mediated mitochondrial or proteasomal dysfunction increases the expression of hypoxia-responsive reporter Pnhr-57::GFP in C. elegans. Interestingly, only a subset of these effects requires hif-1. Of particular importance, we found that skn-1 RNAi increases the expression of hypoxia-responsive reporter Pnhr-57::GFP and elevates HIF-1 protein levels. The SKN-1/NRF transcription factor has been shown to promote oxidative stress resistance. We present evidence that the crosstalk between HIF-1 and SKN-1 is mediated by EGL-9, the prolyl hydroxylase that targets HIF-1 for oxygen-dependent degradation. Treatment that induces SKN-1, such as heat or gsk-3 RNAi, increases expression of a Pegl-9::GFP reporter, and this effect requires skn-1 function and a putative SKN-1 binding site in egl-9 regulatory sequences. Collectively, these data support a model in which SKN-1 promotes egl-9 transcription, thereby inhibiting HIF-1. We propose that this interaction enables animals to adapt quickly to changes in cellular oxygenation and to better survive accompanying oxidative stress.


Hepatitis B Virus X Protein (HBx) Suppresses Transcription Factor EB (TFEB) Resulting in Stabilization of Integrin Beta 1 (ITGB1) in Hepatocellular Carcinoma Cells.

  • Chunyan Zhang‎ et al.
  • Cancers‎
  • 2021‎

Hepatitis B virus (HBV) infection is a major etiological risk for the incidence of hepatocellular carcinoma (HCC), and HBV X protein (HBx) is essential for oncogenic transformation. It is not known that if HBx can sabotage the lysosomal system for transformation and tumorigenesis, or its mechanism if it does have an effect. Examining clinical data, we observed that the downregulation of lysosomal components and transcription factor EB (TFEB) was associated with a poor prognosis of HCC patients. In HCC cells, we found that expression of HBx suppressed TFEB, impaired biogenesis of autophagic-lysosome, and promoted cellular dissemination. HBx mediated downregulation of TFEB led to impairment of autophagic/lysosomal biogenesis and flux, and consequently, accumulation of integrin beta 1 (ITGB1) for motility of HCC cells. Conversely, TFEB, in a steady-state condition, through induction of lysosomal biogenesis restrained ITGB1 levels and limited mobility of HCC cells. Specifically, overexpression of TFEB upregulated and activated the cysteine proteases including cathepsin L (CTSL) to degrade ITGB1. Conversely, expression of cystatin A (CSTA) or cystatin B (CSTB), the cellular inhibitors of lysosomal cysteine proteinases, spared ITGB1 from degradation and promoted dissemination of HCC cells. Taken together, this study suggests a potential mechanism for HBV-mediated malignancy, showing that HBx mediated downregulation of TFEB leads to accumulation of ITGB1 for HCC cell migration.


CLEC10A can serve as a potential therapeutic target and its level correlates with immune infiltration in breast cancer.

  • Shasha Tang‎ et al.
  • Oncology letters‎
  • 2022‎

Breast cancer (BC) is one of the most common malignant cancers in females worldwide and greatly threatens women's health. The C-type lectin domain family 10 member A (CLEC10A) is a member of the C-type lectin receptor family that has been previously reported to promote the antitumor activity of immune cells. In the present study, the potential prognostic value of CLEC10A expression in BC was assessed using data from The Cancer Genome Atlas online database. Differences in the mRNA expression levels of CLEC10A between BC and normal tissues were then analyzed using the Tumor Immune Estimation Resource (TIMER) platform and the University of Alabama at Birmingham Cancer data analysis portal. Reverse transcription-quantitative PCR was performed to validate the results of this analysis. The Kaplan-Meier plotter database was used to evaluate the association between the mRNA expression levels of CLEC10A and clinical prognosis of BC. Based on the association between the mRNA expression levels of CLEC10A and the tumor immune microenvironment, the TIMER platform and the Tumor and Immune System Interaction Database website were utilized to assess the correlation between CLEC10A expression and the degree of tumor immune cell infiltration. The present study revealed that CLEC10A expression was significantly lower in BC tissues compared with that in normal tissues, which was in turn associated with poorer clinical outcomes. This suggested that lower CLEC10A expression levels were associated with unfavorable prognosis in BC. In addition, the expression level of CLEC10A was found to be positively associated with the level of different tumor-infiltrating immune cells in BC, including CD8 T cells, B cells, macrophages and NK cells which, was in turn closely correlated with some gene markers such as CD19, CD8A, KIR2DS4 and PTGS2. These results suggest that the relationship between lower CLEC10A expression level and poor prognosis in BC may be due to the role of CLEC10A in the tumor immune microenvironment. In conclusion, CLEC10A may be a potential biomarker that can be used to efficiently predict prognosis in patients with BC.


Global trends in poliomyelitis research over the past 20 years: A bibliometric analysis.

  • Qi Liu‎ et al.
  • Human vaccines & immunotherapeutics‎
  • 2023‎

Poliomyelitis is an acute infectious disease caused by poliovirus. This bibliometric analysis aims to examine the status of poliomyelitis research in the past 20 years. Information regarding polio research was obtained from the Web of Science Core Collection database. CiteSpace, VOSviewer, and Excel were used to perform visual and bibliometric analysis with respect to countries/regions, institutions, authors, journals and keywords. A total of 5,335 publications on poliomyelitis were published from 2002 to 2021. The USA was the county with the majority of publications. Additionally, the most productive institution was the Centers for Disease Control and Prevention. Sutter, RW produced the most papers and had the most co-citations. Vaccine was the journal with the most polio-related publications and citations. The most common keywords were mainly about polio immunology research ("polio," "immunization," "children," "eradication" and "vaccine"). Our study is helpful for identifying research hotspots and providing direction for future research on poliomyelitis.


Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure.

  • Yi Zhang‎ et al.
  • PloS one‎
  • 2014‎

Many proteins are transported across lipid membranes by protein translocation systems in living cells. The twin-arginine transport (Tat) system identified in bacteria and plant chloroplasts is a unique system that transports proteins across membranes in their fully-folded states. Up to date, the detailed molecular mechanism of this process remains largely unclear. The Escherichia coli Tat system consists of three essential transmembrane proteins: TatA, TatB and TatC. Among them, TatB and TatC form a tight complex and function in substrate recognition. The major component TatA contains a single transmembrane helix followed by an amphipathic helix, and is suggested to form the translocation pore via self-oligomerization. Since the TatA oligomer has to accommodate substrate proteins of various sizes and shapes, the process of its assembly stands essential for understanding the translocation mechanism. A structure model of TatA oligomer was recently proposed based on NMR and EPR observations, revealing contacts between the transmembrane helices from adjacent subunits. Herein we report the construction and stabilization of a dimeric TatA, as well as the structure determination by solution NMR spectroscopy. In addition to more extensive inter-subunit contacts between the transmembrane helices, we were also able to observe interactions between neighbouring amphipathic helices. The side-by-side packing of the amphipathic helices extends the solvent-exposed hydrophilic surface of the protein, which might be favourable for interactions with substrate proteins. The dimeric TatA structure offers more detailed information of TatA oligomeric interface and provides new insights on Tat translocation mechanism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: