Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 319,094 papers

Visualizing natural history collection data provides insight into collection development and bias.

  • Vaughn Shirey‎
  • Biodiversity data journal‎
  • 2018‎

Natural history collections contain estimated billions of records representing a large body of knowledge about the diversity and distribution of life on Earth. Assessments of various forms of bias within the aggregated data associated with specimens in these collections have been conducted across temporal, taxonomic, and spatial domains. Considering that these biases are the sum of biases across all contributing collections to aggregate datasets, the assessment of bias at the collection level is warranted. Interactive visualization provides a powerful tool for the assessment of these biases and insight into the historical development of natural history collections, providing context for where sources of bias may originate and developing historical narratives to clarify our understanding of our own knowledge about life on Earth. Here, I present a case study on using Sankey diagrams to illustrate the development of the entomology type collection at the Academy of Natural Sciences of Drexel University in Philadelphia, Pennsylvania with the hope that extensions of these practices among individual natural history collections are modified and adopted.


NIDDK data repository: a central collection of clinical trial data.

  • A Jamie Cuticchia‎ et al.
  • BMC medical informatics and decision making‎
  • 2006‎

The National Institute of Diabetes and Digestive and Kidney Diseases have established central repositories for the collection of DNA, biological samples, and clinical data to be catalogued at a single site. Here we present an overview of the site which stores the clinical data and links to biospecimens.


An intelligent tool for activity data collection.

  • A M Jehad Sarkar‎
  • Sensors (Basel, Switzerland)‎
  • 2011‎

Activity recognition systems using simple and ubiquitous sensors require a large variety of real-world sensor data for not only evaluating their performance but also training the systems for better functioning. However, a tremendous amount of effort is required to setup an environment for collecting such data. For example, expertise and resources are needed to design and install the sensors, controllers, network components, and middleware just to perform basic data collections. It is therefore desirable to have a data collection method that is inexpensive, flexible, user-friendly, and capable of providing large and diverse activity datasets. In this paper, we propose an intelligent activity data collection tool which has the ability to provide such datasets inexpensively without physically deploying the testbeds. It can be used as an inexpensive and alternative technique to collect human activity data. The tool provides a set of web interfaces to create a web-based activity data collection environment. It also provides a web-based experience sampling tool to take the user's activity input. The tool generates an activity log using its activity knowledge and the user-given inputs. The activity knowledge is mined from the web. We have performed two experiments to validate the tool's performance in producing reliable datasets.


A collection of yeast cellular electron cryotomography data.

  • Lu Gan‎ et al.
  • GigaScience‎
  • 2019‎

Cells are powered by a large set of macromolecular complexes, which work together in a crowded environment. The in situ mechanisms of these complexes are unclear because their 3D distribution, organization, and interactions are largely unknown. Electron cryotomography (cryo-ET) can address these knowledge gaps because it produces cryotomograms-3D images that reveal biological structure at ∼4-nm resolution. Cryo-ET uses no fixation, dehydration, staining, or plastic embedment, so cellular features are visualized in a life-like, frozen-hydrated state. To study chromatin and mitotic machinery in situ, we subjected yeast cells to genetic and chemical perturbations, cryosectioned them, and then imaged the cells by cryo-ET.


Evaluating passive physiological data collection during Spravato treatment.

  • Todd M Solomon‎ et al.
  • Frontiers in digital health‎
  • 2023‎

Spravato and other drugs with consciousness-altering effects show significant promise for treating various mental health disorders. However, the effects of these treatments necessitate a substantial degree of patient monitoring which can be burdensome to healthcare providers and may make these treatments less accessible for prospective patients. Continuous passive monitoring via digital devices may be useful in reducing this burden. This proof-of-concept study tested the MindMed Session Monitoring System™ (MSMS™), a continuous passive monitoring system intended for use during treatment sessions involving pharmaceutical products with consciousness-altering effects. Participants completed 129 Spravato sessions with MSMS at an outpatient psychiatry clinic specializing in Spravato treatment. Results indicated high rates of data quality and self-reported usability among participants and health care providers (HCPs). These findings demonstrate the potential for systems such as MSMS to be used in consciousness-altering treatment sessions to assist with patient monitoring.


Harmonising data collection from osteoarthritis studies to enable stratification: recommendations on core data collection from an Arthritis Research UK clinical studies group.

  • Sarah R Kingsbury‎ et al.
  • Rheumatology (Oxford, England)‎
  • 2016‎

Treatment of OA by stratifying for commonly used and novel therapies will likely improve the range of effective therapy options and their rational deployment in this undertreated, chronic disease. In order to develop appropriate datasets for conducting post hoc analyses to inform approaches to stratification for OA, our aim was to develop recommendations on the minimum data that should be recorded at baseline in all future OA interventional and observational studies.


Accumulation-depuration data collection in support of toxicokinetic modelling.

  • Aude Ratier‎ et al.
  • Scientific data‎
  • 2022‎

Regulatory bodies require bioaccumulation evaluation of chemicals within organisms to better assess toxic risks. Toxicokinetic (TK) data are particularly useful in relating the chemical exposure to the accumulation and depuration processes happening within organisms. TK models are used to predict internal concentrations when experimental data are lacking or difficult to access, such as within target tissues. The bioaccumulative property of chemicals is quantified by metrics calculated from TK model parameters after fitting to data collected via bioaccumulation tests. In bioaccumulation tests, internal concentrations of chemicals are measured within organisms at regular time points during accumulation and depuration phases. The time course is captured by TK model parameters thus providing bioaccumulation metrics. But raw TK data remain difficult to access, most often provided within papers as plots. To increase availability of TK data, we developed an innovative database from data extracted in the scientific literature to support TK modelling. Freely available, our database can dynamically evolve thanks to any researcher interested in sharing data to be findable, accessible, interoperable and reusable.


Measuring Mental Effort for Creating Mobile Data Collection Applications.

  • Johannes Schobel‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

To deal with drawbacks of paper-based data collection procedures, the QuestionSys approach empowers researchers with none or little programming knowledge to flexibly configure mobile data collection applications on demand. The mobile application approach of QuestionSys mainly pursues the goal to mitigate existing drawbacks of paper-based collection procedures in mHealth scenarios. Importantly, researchers shall be enabled to gather data in an efficient way. To evaluate the applicability of QuestionSys, several studies have been carried out to measure the efforts when using the framework in practice. In this work, the results of a study that investigated psychological insights on the required mental effort to configure the mobile applications are presented. Specifically, the mental effort for creating data collection instruments is validated in a study with N = 80 participants across two sessions. Thereby, participants were categorized into novices and experts based on prior knowledge on process modeling, which is a fundamental pillar of the developed approach. Each participant modeled 10 instruments during the course of the study, while concurrently several performance measures are assessed (e.g., time needed or errors). The results of these measures are then compared to the self-reported mental effort with respect to the tasks that had to be modeled. On one hand, the obtained results reveal a strong correlation between mental effort and performance measures. On the other, the self-reported mental effort decreased significantly over the course of the study, and therefore had a positive impact on measured performance metrics. Altogether, this study indicates that novices with no prior knowledge gain enough experience over the short amount of time to successfully model data collection instruments on their own. Therefore, QuestionSys is a helpful instrument to properly deal with large-scale data collection scenarios like clinical trials.


Key considerations for child and adolescent MRI data collection.

  • Brittany R Davis‎ et al.
  • Frontiers in neuroimaging‎
  • 2022‎

Cognitive neuroimaging researchers' ability to infer accurate statistical conclusions from neuroimaging depends greatly on the quality of the data analyzed. This need for quality control is never more evident than when conducting neuroimaging studies with children and adolescents. Developmental neuroimaging requires patience, flexibility, adaptability, extra time, and effort. It also provides us a unique, non-invasive way to understand the development of cognitive processes, individual differences, and the changing relations between brain and behavior over the lifespan. In this discussion, we focus on collecting magnetic resonance imaging (MRI) data, as it is one of the more complex protocols used with children and youth. Through our extensive experience collecting MRI datasets with children and families, as well as a review of current best practices, we will cover three main topics to help neuroimaging researchers collect high-quality datasets. First, we review key recruitment and retention techniques, and note the importance for consistency and inclusion across groups. Second, we discuss ways to reduce scan anxiety for families and ways to increase scan success by describing the pre-screening process, use of a scanner simulator, and the need to focus on participant and family comfort. Finally, we outline several important design considerations in developmental neuroimaging such as asking a developmentally appropriate question, minimizing data loss, and the applicability of public datasets. Altogether, we hope this article serves as a useful tool for those wishing to enter or learn more about developmental cognitive neuroscience.


Overcoming resolution attenuation during tilted cryo-EM data collection.

  • Sriram Aiyer‎ et al.
  • Nature communications‎
  • 2024‎

Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation, containing an unnatural nucleotide for studying novel base pair recognition. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle during data acquisition. These results reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.


Centralizing prescreening data collection to inform data-driven approaches to clinical trial recruitment.

  • Dylan R Kirn‎ et al.
  • Alzheimer's research & therapy‎
  • 2023‎

Recruiting to multi-site trials is challenging, particularly when striving to ensure the randomized sample is demographically representative of the larger disease-suffering population. While previous studies have reported disparities by race and ethnicity in enrollment and randomization, they have not typically investigated whether disparities exist in the recruitment process prior to consent. To identify participants most likely to be eligible for a trial, study sites frequently include a prescreening process, generally conducted by telephone, to conserve resources. Collection and analysis of such prescreening data across sites could provide valuable information to improve understanding of recruitment intervention effectiveness, including whether traditionally underrepresented participants are lost prior to screening.


Salmonellosis outbreak archive in China: data collection and assembly.

  • Zining Wang‎ et al.
  • Scientific data‎
  • 2024‎

Infectious disease outbreaks transcend the medical and public health realms, triggering widespread panic and impeding socio-economic development. Considering that self-limiting diarrhoea of sporadic cases is usually underreported, the Salmonella outbreak (SO) study offers a unique opportunity for source tracing, spatiotemporal correlation, and outbreak prediction. To summarize the pattern of SO and estimate observational epidemiological indicators, 1,134 qualitative reports screened from 1949 to 2023 were included in the systematic review dataset, which contained a 506-study meta-analysis dataset. In addition to the dataset comprising over 50 columns with a total of 46,494 entries eligible for inclusion in systematic reviews or input into prediction models, we also provide initial literature collection datasets and datasets containing socio-economic and climate information for relevant regions. This study has a broad impact on advancing knowledge regarding epidemic trends and prevention priorities in diverse salmonellosis outbreaks and guiding rational policy-making or predictive modeling to mitigate the infringement upon the right to life imposed by significant epidemics.


Development of an Electronic Data Collection System to Support a Large-Scale HIV Behavioral Intervention Trial: Protocol for an Electronic Data Collection System.

  • W Scott Comulada‎ et al.
  • JMIR research protocols‎
  • 2018‎

Advancing technology has increased functionality and permitted more complex study designs for behavioral interventions. Investigators need to keep pace with these technological advances for electronic data capture (EDC) systems to be appropriately executed and utilized at full capacity in research settings. Mobile technology allows EDC systems to collect near real-time data from study participants, deliver intervention directly to participants' mobile devices, monitor staff activity, and facilitate near real-time decision making during study implementation.


German primary care data collection projects: a scoping review.

  • Konstantin Moser‎ et al.
  • BMJ open‎
  • 2024‎

The widespread use of electronic health records (EHRs) has led to a growing number of large routine primary care data collection projects globally, making these records a valuable resource for health services and epidemiological and clinical research. This scoping review aims to comprehensively assess and compare strengths and limitations of all German primary care data collection projects and relevant research publications that extract data directly from practice management systems (PMS).


A Lightweight Exoskeleton-Based Portable Gait Data Collection System.

  • Md Rejwanul Haque‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

For the controller of wearable lower-limb assistive devices, quantitative understanding of human locomotion serves as the basis for human motion intent recognition and joint-level motion control. Traditionally, the required gait data are obtained in gait research laboratories, utilizing marker-based optical motion capture systems. Despite the high accuracy of measurement, marker-based systems are largely limited to laboratory environments, making it nearly impossible to collect the desired gait data in real-world daily-living scenarios. To address this problem, the authors propose a novel exoskeleton-based gait data collection system, which provides the capability of conducting independent measurement of lower limb movement without the need for stationary instrumentation. The basis of the system is a lightweight exoskeleton with articulated knee and ankle joints. To minimize the interference to a wearer's natural lower-limb movement, a unique two-degrees-of-freedom joint design is incorporated, integrating a primary degree of freedom for joint motion measurement with a passive degree of freedom to allow natural joint movement and improve the comfort of use. In addition to the joint-embedded goniometers, the exoskeleton also features multiple positions for the mounting of inertia measurement units (IMUs) as well as foot-plate-embedded force sensing resistors to measure the foot plantar pressure. All sensor signals are routed to a microcontroller for data logging and storage. To validate the exoskeleton-provided joint angle measurement, a comparison study on three healthy participants was conducted, which involves locomotion experiments in various modes, including overground walking, treadmill walking, and sit-to-stand and stand-to-sit transitions. Joint angle trajectories measured with an eight-camera motion capture system served as the benchmark for comparison. Experimental results indicate that the exoskeleton-measured joint angle trajectories closely match those obtained through the optical motion capture system in all modes of locomotion (correlation coefficients of 0.97 and 0.96 for knee and ankle measurements, respectively), clearly demonstrating the accuracy and reliability of the proposed gait measurement system.


Facilities that make the PDB data collection more powerful.

  • Joanna Lange‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2020‎

We describe a series of databases and tools that directly or indirectly support biomedical research on macromolecules, with focus on their applicability in protein structure bioinformatics research. DSSP, that determines secondary structures of proteins, has been updated to work well with extremely large structures in multiple formats. The PDBREPORT database that lists anomalies in protein structures has been remade to remove many small problems. These reports are now available as PDF-formatted files with a computer-readable summary. The VASE software has been added to analyze and visualize HSSP multiple sequence alignments for protein structures. The Lists collection of databases has been extended with a series of databases, most noticeably with a database that gives each protein structure a grade for usefulness in protein structure bioinformatics projects. The PDB-REDO collection of reanalyzed and re-refined protein structures that were solved by X-ray crystallography has been improved by dealing better with sugar residues and with hydrogen bonds, and adding many missing surface loops. All academic software underlying these protein structure bioinformatics applications and databases are now publicly accessible, either directly from the authors or from the GitHub software repository.


Collection of Simulated Data from a Thalamocortical Network Model.

  • Helena Głąbska‎ et al.
  • Neuroinformatics‎
  • 2017‎

A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. In some sciences, this could be a mathematical proof, yet biological systems usually do not satisfy assumptions of mathematical theorems. One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. Moreover, these data can be used to study the effects of different tissue models on the measurement. The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al., Journal of Neurophysiology, 93(4), 2194-2232 (Traub et al. 2005)), with activity evoked by different thalamic stimuli.


Usability of novel major TraumaApp for digital data collection.

  • Joanna Butler‎ et al.
  • BMC emergency medicine‎
  • 2022‎

Delivery of major trauma care is complex and often fast paced. Clear and comprehensive documentation is paramount to support effective communication during complex clinical care episodes, and to allow collection of data for audit, research and continuous improvement. Clinical events are typically recorded on paper-based records that are developed for individual centres or systems. As one of the priorities laid out by the Scottish Trauma Network project was to develop an electronic data collection system, the TraumaApp was created as a data collection tool for major trauma that could be adopted worldwide.


Chorioamnionitis: Case definition & guidelines for data collection, analysis, and presentation of immunization safety data.

  • Alisa Kachikis‎ et al.
  • Vaccine‎
  • 2019‎

No abstract available


Common data elements for predictors of pediatric sepsis: A framework to standardize data collection.

  • Alishah Mawji‎ et al.
  • PloS one‎
  • 2021‎

Standardized collection of predictors of pediatric sepsis has enormous potential to increase data compatibility across research studies. The Pediatric Sepsis Predictor Standardization Working Group collaborated to define common data elements for pediatric sepsis predictors at the point of triage to serve as a standardized framework for data collection in resource-limited settings.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: