2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 156 papers

Effects of adipocyte-conditioned cell culture media on S1P treatment of human triple-negative breast cancer cells.

  • Xiyuan Wu‎ et al.
  • PloS one‎
  • 2023‎

Sphingosine-1-phosphate (S1P) is a potent sphingolipid metabolite that regulates a wide range of biological functions such as cell proliferation, cell apoptosis and angiogenesis. Its cellular level is elevated in breast cancer, which, in turn, would promote cancer cell proliferation, survival, growth and metastasis. However, the cellular concentration of S1P is normally in the low nanomolar range, and our previous studies showed that S1P selectively induced apoptosis of breast cancer cells at high concentrations (high nanomolar to low micromolar). Thus, local administration of high-concentration S1P alone or in combination of chemotherapy agents could be used to treat breast cancer. The breast mainly consists of mammary gland and connective tissue stroma (adipose), which are dynamically interacting each other. Thus, in the current study, we evaluated how normal adipocyte-conditioned cell culture media (AD-CM) and cancer-associated adipocyte-conditioned cell culture media (CAA-CM) would affect high-concentration S1P treatment of triple-negative breast cancer (TNBC) cells. Both AD-CM and CAA-CM may suppress the anti-proliferative effect and reduce nuclear alteration/apoptosis caused by high-concentration S1P. This implicates that adipose tissue is likely to be detrimental to local high-concentration S1P treatment of TNBC. Because the interstitial concentration of S1P is about 10 times higher than its cellular level, we undertook a secretome analysis to understand how S1P would affect the secreted protein profile of differentiated SGBS adipocytes. At 100 nM S1P treatment, we identified 36 upregulated and 21 downregulated secretome genes. Most of these genes are involved in multiple biological processes. Further studies are warranted to identify the most important secretome targets of S1P in adipocytes and illustrate the mechanism on how these target proteins affect S1P treatment of TNBC.


MSCs conditioned media and umbilical cord blood plasma metabolomics and composition.

  • Tiago Pereira‎ et al.
  • PloS one‎
  • 2014‎

Human mesenchymal stem cells (hMSCs) from umbilical cord (UC) blood (UCB) and matrix are tested clinically for a variety of pathologies but in vitro expansion using culture media containing fetal bovine serum (FBS) is essential to achieve appropriate cell numbers for clinical use. Human UCB plasma (hUCBP) can be used as a supplement for hMSCs culture, since UCB is rich in soluble growth factors and due to worldwide increased number of cryopreserved UCB units in public and private banks, without the disadvantages listed for FBS. On the other hand, the culture media enriched in growth factors produced by these hMSCs in expansion (Conditioned medium--CM) can be an alternative to hMSCs application. The CM of the hMSCs from the UC might be a better therapeutic option compared to cell transplantation, as it can benefit from the local tissue response to the secreted molecules without the difficulties and complications associated to the engraftment of the allo- or xeno-transplanted cells. These facts drove us to know the detailed composition of the hUCBP and CM, by 1H-NMR and Multiplexing LASER Bead Technology. hUCBP is an adequate alternative for the FBS and the CM and hUCBP are important sources of growth factors, which can be used in MSCs-based therapies. Some of the major proliferative, chemotactic and immunomodulatory soluble factors (TGF-β, G-CSF, GM-CSF, MCP-1, IL-6, IL-8) were detected in high concentrations in CM and even higher in hUCBP. The results from 1H-NMR spectroscopic analysis of CM endorsed a better understanding of hMSCs metabolism during in vitro culture, and the relative composition of several metabolites present in CM and hUCBP was obtained. The data reinforces the potential use of hUCBP and CM in tissue regeneration and focus the possible use of hUCBP as a substitute for the FBS used in hMSCs in vitro culture.


Effect of Concentrated Fibroblast-Conditioned Media on In Vitro Maintenance of Rat Primary Hepatocyte.

  • Dayeong Jeong‎ et al.
  • PloS one‎
  • 2016‎

The effects of concentrated fibroblast-conditioned media were tested to determine whether hepatocyte function can be maintained without direct contact between hepatocytes and fibroblasts. Primary rat hepatocytes cultured with a concentrated conditioned media of NIH-3T3 J2 cell line (final concentration of 55 mg/ml) showed significantly improved survival and functions (albumin and urea) compared to those of control groups. They also showed higher expression levels of mRNA, albumin and tyrosine aminotransferase compared to hepatocyte monoculture. The results suggest that culture with concentrated fibroblast-conditioned media could be an easy method for in vitro maintenance of primary hepatocytes. They also could be contribute to understand and analyze co-culture condition of hepatocyte with stroma cells.


Effect of treatment with conditioned media derived from C2C12 myotube on adipogenesis and lipolysis in 3T3-L1 adipocytes.

  • Kotaro Tamura‎ et al.
  • PloS one‎
  • 2020‎

Regular exercise is an effective strategy that is used to prevent and treat obesity as well as type 2 diabetes. Exercise-induced myokine secretion is considered a mechanism that coordinates communication between muscles and other organs. In order to examine the possibility of novel communications from muscle to adipose tissue mediated by myokines, we treated 3T3-L1 adipocytes with C2C12 myotube electrical pulse stimulation-conditioned media (EPS-CM), using a C2C12 myotube contraction system stimulated by an electrical pulse. Continuous treatment with myotube EPS-CM promoted adipogenesis of 3T3-L1 pre-adipocytes via the upregulation of the peroxisome proliferator-activated receptor-gamma (PPARγ) 2 and PPARγ-regulated gene expression. Furthermore, our results revealed that myotube EPS-CM induces lipolysis and secretion of adiponectin in mature adipocytes. EPS-CM obtained from a C2C12 myoblast culture did not induce such changes in these genes, suggesting that contraction-induced myokine(s) secretion occurs particularly in differentiated myotubes. Thus, contraction-induced secretion of myokine(s) promotes adipogenesis and lipid metabolism in 3T3-L1 adipocytes. These findings suggest the possibility that skeletal muscle communicates to adipose tissues during exercise, probably by the intermediary of unidentified myokines.


Conditioned medium from asbestos-exposed fibroblasts affects proliferation and invasion of lung cancer cell lines.

  • Seunghye Yu‎ et al.
  • PloS one‎
  • 2019‎

The importance of the role of fibroblasts in cancer microenvironment is well-recognized. However, the relationship between fibroblasts and asbestos-induced lung cancer remains underexplored. To investigate the effect of the asbestos-related microenvironment on lung cancer progression, lung cancer cells (NCI-H358, Calu-3, and A549) were cultured in media derived from IMR-90 lung fibroblasts exposed to 50 mg/L asbestos (chrysotile, amosite, and crocidolite) for 24 h. The kinetics and migration of lung cancer cells in the presence of asbestos-exposed lung fibroblast media were monitored using a real-time cell analysis system. Proliferation and migration of A549 cells increased in the presence of media derived from asbestos-exposed lung fibroblasts than in the presence of media derived from normal lung fibroblasts. We observed no increase in proliferation and migration in lung cancer cells cultured in asbestos-exposed lung cancer cell medium. In contrast, increased proliferation and migration in lung cancer cells exposed to media from asbestos-exposed lung fibroblasts was observed for all types of asbestos. Media derived from lung fibroblasts exposed to other stressors, such as hydrogen peroxide and UV radiation didn't show as similar effect as asbestos exposure. An enzyme-linked immunosorbent assay (ELISA)-based cytokine array identified interleukin (IL)-6 and IL-8, which show pleiotropic regulatory effects on lung cancer cells, to be specifically produced in higher amounts by the three types of asbestos-exposed lung fibroblasts than normal lung fibroblasts. Thus, the present study demonstrated that interaction of lung fibroblasts with asbestos may support the growth and metastasis of lung cancer cells and that chrysotile exposure can lead to lung cancer similar to that caused by amphibole asbestos (amosite and crocidolite).


Characterisation of human embryonic stem cells conditioning media by 1H-nuclear magnetic resonance spectroscopy.

  • David A MacIntyre‎ et al.
  • PloS one‎
  • 2011‎

Cell culture media conditioned by human foreskin fibroblasts (HFFs) provide a complex supplement of protein and metabolic factors that support in vitro proliferation of human embryonic stem cells (hESCs). However, the conditioning process is variable with different media batches often exhibiting differing capacities to maintain hESCs in culture. While recent studies have examined the protein complement of conditioned culture media, detailed information regarding the metabolic component of this media is lacking.


Media composition modulates human embryonic stem cell morphology and may influence preferential lineage differentiation potential.

  • Linda Harkness‎ et al.
  • PloS one‎
  • 2019‎

Undifferentiated human embryonic stem cells have a distinct morphology (hESC). Changes in cell morphology during culture can be indicative of differentiation. hESC, maintained in diverse medias, demonstrated alterations in morphological parameters and subsequent alterations in underlying transcript expression and lineage differentiation. Analysis of morphological parameters showed distinct and significant differences between the undefined, less defined and Xeno-free medias while still maintaining pluripotency markers. This suggested that the less defined media may be creating dynamic instability in the cytoskeleton, with the cytoskeleton becoming more stabilised in the Xeno-free media as demonstrated by smaller and rounder cells. Examination of early lineage markers during undirected differentiation using d5 embryoid bodies demonstrated increased mesodermal lineage preference as compared to endodermal or ectoderm in cells originally cultured in Xeno-free media. Undefined media showed preference for mesoderm and ectoderm lineages, while less defined media (BSA present) demonstrated no preference. These data reveal that culture media may produce fundamental changes in cell morphology which are reflected in early lineage differentiation choice.


Air exposure induced characteristics of dry eye in conjunctival tissue culture.

  • Hui Lin‎ et al.
  • PloS one‎
  • 2014‎

There are several animal models illustrating dry eye pathophysiology. Current study would like to establish an ex vivo tissue culture model for characterizing dry eye. Human conjunctival explants were cultured under airlift or submerged conditions for up to 2 weeks, and only airlifted conjunctival cultures underwent increased epithelial stratification. Starting on day 4, the suprabasal cells displayed decreased K19 expression whereas K10 keratin became evident in airlift group. Pax6 nuclear expression attenuated already at 2 days, while its perinuclear and cytoplasmic expression gradually increased. MUC5AC and MUC19 expression dramatically decreased whereas the full thickness MUC4 and MUC16 expression pattern disappeared soon after initiating the airlift condition. Real time PCR showed K16, K10 and MUC16 gene up-regulated while K19, MUC5AC, MUC19 and MUC4 down-regulated on day 8 and day 14. On day 2 was the appearance of apoptotic epithelial and stromal cells appeared. The Wnt signaling pathway was transiently activated from day 2 to day 10. The inflammatory mediators IL-1β, TNF-α, and MMP-9 were detected in the conditioned media after 6 to 8 days. In conclusion, airlifted conjunctival tissue cultures demonstrated Wnt signaling pathway activation, coupled with squamous metaplasia, mucin pattern alteration, apoptosis and upregulation of proinflammatory cytokine expression. These changes mimic the pathohistological alterations described in dry eye. This correspondence suggests that insight into the pathophysiology of dry eye may be aided through the use of airlifted conjunctival tissue cultures.


Novel 3D co-culture model for epithelial-stromal cells interaction in prostate cancer.

  • Xiaolan Fang‎ et al.
  • PloS one‎
  • 2013‎

Paracrine function is a major mechanism of cell-cell communication within tissue microenvironment in normal development and disease. In vitro cell culture models simulating tissue or tumor microenvironment are necessary tools to delineate epithelial-stromal interactions including paracrine function, yet an ideal three-dimensional (3D) tumor model specifically studying paracrine function is currently lacking. In order to fill this void we developed a novel 3D co-culture model in double-layered alginate hydrogel microspheres, incorporating prostate cancer epithelial and stromal cells in separate compartments of the microspheres. The cells remained confined and viable within their respective spheres for over 30 days. As a proof of principle regarding paracrine function of the model, we measured shedded component of E-cadherin (sE-cad) in the conditioned media, a major membrane bound cell adhesive molecule that is highly dysregulated in cancers including prostate cancer. In addition to demonstrating that sE-cad can be reliably quantified in the conditioned media, the time course experiments also demonstrated that the amount of sE-cad is influenced by epithelial-stromal interaction. In conclusion, the study establishes a novel 3D in vitro co-culture model that can be used to study cell-cell paracrine interaction.


Asiatic acid inhibits pro-angiogenic effects of VEGF and human gliomas in endothelial cell culture models.

  • Chandagirikoppal V Kavitha‎ et al.
  • PloS one‎
  • 2011‎

Malignant gliomas are one of the most devastating and incurable tumors. Sustained excessive angiogenesis by glioma cells is the major reason for their uncontrolled growth and resistance toward conventional therapies resulting in high mortality. Therefore, targeting angiogenesis should be a logical strategy to prevent or control glioma cell growth. Earlier studies have shown that Asiatic Acid (AsA), a pentacyclic triterpenoid, is effective against glioma and other cancer cells; however, its efficacy against angiogenesis remains unknown. In the present study, we examined the anti-angiogenic efficacy of AsA using human umbilical vein endothelial cells (HUVEC) and human brain microvascular endothelial cells (HBMEC). Our results showed that AsA (5-20 µM) inhibits HUVEC growth and induces apoptotic cell death by activating caspases (3 and 9) and modulating the expression of apoptosis regulators Bad, survivin and pAkt-ser473. Further, AsA showed a dose-dependent inhibition of HUVEC migration, invasion and capillary tube formation, and disintegrated preformed capillary network. AsA also inhibited the VEGF-stimulated growth and capillary tube formation by HUVEC and HBMEC. Next, we analyzed the angiogenic potential of conditioned media collected from human glioma LN18 and U87-MG cells treated with either DMSO (control conditioned media, CCM) or AsA 20 µM (AsA20 conditioned media, AsA20CM). CCM from glioma cells significantly enhanced the capillary tube formation in both HUVEC and HBMEC, while capillary tube formation in both endothelial cell lines was greatly compromised in the presence of AsA20CM. Consistent with these results, VEGF expression was lesser in AsA20CM compared to CCM, and indeed AsA strongly inhibited VEGF level (both cellular and secreted) in glioma cells. AsA also showed dose-dependent anti-angiogenic efficacy in Matrigel plug assay, and inhibited the glioma cells potential to attract HUVEC/HBMEC. Overall, the present study clearly showed the strong anti-angiogenic potential of AsA and suggests its usefulness against malignant gliomas.


Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system.

  • Bridget S Fisher‎ et al.
  • PloS one‎
  • 2013‎

Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.


Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins.

  • Anirban Ghosh‎ et al.
  • PloS one‎
  • 2014‎

Recent studies indicate that extracellular vesicles are an important source material for many clinical applications, including minimally-invasive disease diagnosis. However, challenges for rapid and simple extracellular vesicle collection have hindered their application. We have developed and validated a novel class of peptides (which we named venceremin, or Vn) that exhibit nucleotide-independent specific affinity for canonical heat shock proteins. The Vn peptides were validated to specifically and efficiently capture HSP-containing extracellular vesicles from cell culture growth media, plasma, and urine by electron microscopy, atomic force microscopy, sequencing of nucleic acid cargo, proteomic profiling, immunoblotting, and nanoparticle tracking analysis. All of these analyses confirmed the material captured by the Vn peptides was comparable to those purified by the standard ultracentrifugation method. We show that the Vn peptides are a useful tool for the rapid isolation of extracellular vesicles using standard laboratory equipment. Moreover, the Vn peptides are adaptable to diverse platforms and therefore represent an excellent solution to the challenge of extracellular vesicle isolation for research and clinical applications.


Human lung cancer cells grown in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture.

  • Dhruva K Mishra‎ et al.
  • PloS one‎
  • 2012‎

We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture.


MICA-G129R: A bifunctional fusion protein increases PRLR-positive breast cancer cell death in co-culture with natural killer cells.

  • Hui Ding‎ et al.
  • PloS one‎
  • 2021‎

Breast cancer cells were reported to up-regulate human prolactin receptor (PRLR) to assist their growth through the utilization of prolactin (PRL) as the growth factor, which makes PRLR a potential therapeutic target for breast cancer. On the other hand, advanced cancer cells tend to down-regulate or shed off stress signal proteins to evade immune surveillance and elimination. In this report, we created a fusion protein consisting of the extracellular domain of MHC class I chain-related protein (MICA), a stress signal protein and ligand of the activating receptor NKG2D of natural killer (NK) cells, and G129R, an antagonistic variant of PRL. We hypothesize that the MICA portion of the fusion protein binds to NKG2D to activate NK cells and the G129R portion binds to PRLR on breast cancer cells, so that the activated NK cells will kill the PRLR-positive breast cancer cells. We demonstrated that the MICA-G129R fusion protein not only binds to human natural killer NK-92 cells and PRLR-positive human breast cancer T-47D cells, but also promotes NK cells to release granzyme B and IFN-γ and enhances the cytotoxicity of NK cells specifically on PRLR-positive cells. The fusion protein, therefore, represents a new approach for the development of breast cancer specific immunotherapy.


Human esophageal myofibroblasts increase squamous epithelial thickness via paracrine mechanisms in an in vitro model of gastroesophageal reflux disease.

  • Liping Hu‎ et al.
  • PloS one‎
  • 2020‎

The pathogenesis of esophageal injury in gastroesophageal reflux disease (GERD) is incompletely understood. We modeled exposure of human esophageal myofibroblasts (HEMFs) to gastroesophageal reflux by repeated treatment with pH 4.5 and pH 4.5 bile salts and determined the effects on the epithelium in a 3D organotypic-like air-liquid interface model. Total, basal and supra-basal thickness of the epithelium were measured and immunostaining for p63, for basal (CK 14) and supra-basal (CK 4) squamous differentiation markers, and for cell proliferation (PCNA) were performed. Epithelial cell proliferation in response to HEMF conditioned media was also assessed in 2D culture. In the 3D organotypic model, total epithelial thickness increased similarly with pH 4.5 and pH 4.5 bile salt treated versus untreated and bile salt treated HEMF conditioned media. Epithelial p63 immunostaining was increased and multilayered. There was expansion of the CK14+ basal and CK4+ supra-basal layers in the epithelium established with conditioned media from pH 4.5 and pH 4.5 bile salt treated HEMFs versus untreated HEMF conditioned media. PCNA + cells per μm of tissue were unchanged in the basal layer across all treatment conditions while PCNA + cells per total DAPI + cells were decreased. In 2D culture, basal epithelial proliferation decreased with conditioned media from pH 4.5 and pH 4.5 bile salt treated HEMFs compared to conditioned media from untreated HEMF conditioned media. Secreted factors from HEMFs treated with acidic stimuli encountered in GERD increase epithelial thickness compared to secreted factors from untreated HEMFs and expand both basal and supra-basal layers. Our findings demonstrate for the first time paracrine regulation of the squamous epithelium from acid stimulated HEMFs. The effects of secreted factors from acid treated HEMFs on basal cell proliferation in this model and the mechanism mediating the increase in epithelial thickness merit further investigation.


Differential sequences of exosomal NANOG DNA as a potential diagnostic cancer marker.

  • Manjusha Vaidya‎ et al.
  • PloS one‎
  • 2018‎

NANOG has been demonstrated to play an essential role in the maintenance of embryonic stem cells, and its pseudogene, NANOGP8, is suggested to promote the cancer stem cell phenotype. As the roles of these genes are intimately involved with glioblastoma multiforme progression and exosomes are critical in intercellular communication, we conducted a detailed analysis of the association of the NANOG gene family with exosomes to identify diagnostic markers for cancer. Exosomes were precipitated from conditioned culture media from various cell lines, and NANOG gene fragments were directly amplified without DNA isolation using multiple primer sets. The use of the enzymes AlwNI and SmaI with restriction fragment length polymorphism analysis functioned to distinguish NANOGP8 from other NANOG family members. Collectively, results suggest that the NANOG DNA associated with exosomes is not full length and that mixed populations of the NANOG gene family exist. Furthermore, sequence analysis of exosomal DNA amplified with a NANOGP8 specific primer set frequently showed an insertion of a 22 bp sequence into the 3' UTR. The occurrence rate of this insertion was significantly higher in exosomal DNA clones from cancer cells as compared to normal cells. We have detected mixed populations of NANOG DNA associated with exosomes and have identified preferential modulations in the sequences from cancer samples. Our findings, coupled with the properties of exosomes, may allow for the detection of traditionally inaccessible cancers (i.e. GBM) through minimally invasive techniques. Further analysis of exosomal DNA sequences of NANOG and other embryonic stemness genes (OCT3/4, SOX2, etc.) may establish a robust collection of exosome based diagnostic markers, and further elucidate the mechanisms of cancer formation, progression, and metastasis.


Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes.

  • Theodore P Ciaraldi‎ et al.
  • PloS one‎
  • 2016‎

Skeletal muscle secretes factors, termed myokines. We employed differentiated human skeletal muscle cells (hSMC) cultured from Type 2 diabetic (T2D) and non-diabetic (ND) subjects to investigate the impact of T2D on myokine secretion. Following 24 hours of culture concentrations of selected myokines were determined to range over 4 orders of magnitude. T2D hSMC released increased amounts of IL6, IL8, IL15, TNFa, Growth Related Oncogene (GRO)a, monocyte chemotactic protein (MCP)-1, and follistatin compared to ND myotubes. T2D and ND hSMC secreted similar levels of IL1ß and vascular endothelial growth factor (VEGF). Treatment with the inflammatory agents lipopolysaccharide (LPS) or palmitate augmented the secretion of many myokines including: GROa, IL6, IL8, IL15, and TNFa, but did not consistently alter the protein content and/or phosphorylation of IkBa, p44/42 MAPK, p38 MAPK, c-Jun N-terminal kinase (JNK) and NF-kB, nor lead to consistent changes in basal and insulin-stimulated glucose uptake or free fatty acid oxidation. Conversely, treatment with pioglitazone or oleate resulted in modest reductions in the secretion of several myokines. Our results demonstrate that altered secretion of a number of myokines is an intrinsic property of skeletal muscle in T2D, suggesting a putative role of myokines in the response of skeletal muscle to T2D.


Secreted human adipose leptin decreases mitochondrial respiration in HCT116 colon cancer cells.

  • Einav Yehuda-Shnaidman‎ et al.
  • PloS one‎
  • 2013‎

Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, p<0.05) and maximal (50%, p<0.05) OCR and gene expression of mitochondrial proteins and Bax without affecting cell viability or expression of glycolytic enzymes. Similar changes could be recapitulated by incubating cells with leptin, whereas, leptin-receptor specific antagonist inhibited the reduced OCR induced by conditioned media from obese subjects. We conclude that secreted products from the adipose tissue of obese subjects inhibit mitochondrial respiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues.


Aberrant gene expression and sexually incompatible genomic imprinting in oocytes derived from XY mouse embryonic stem cells in vitro.

  • Mai Nitta‎ et al.
  • PloS one‎
  • 2013‎

Mouse embryonic stem cells (ESCs) have the potential to differentiate into germ cells (GCs) in vivo and in vitro. Interestingly, XY ESCs can give rise to both male and female GCs in culture, irrespective of the genetic sex. Recent studies showed that ESC-derived primordial GCs contributed to functional gametogenesis in vivo; however, in vitro differentiation techniques have never succeeded in generating mature oocytes from ESCs due to cryptogenic growth arrest during the preantral follicle stages of development. To address this issue, a mouse ESC line, capable of producing follicle-like structures (FLSs) efficiently, was established to investigate their properties using conventional molecular biological methods. The results revealed that the ESC-derived FLSs were morphologically similar to ovarian primary-to-secondary follicles but never formed an antrum; instead, the FLSs eventually underwent abnormal development or cell death in culture, or formed teratomas when transplanted under the kidney capsule in mice. Gene expression analyses demonstrated that the FLSs lacked transcripts for genes essential to late folliculogenesis, including gonadotropin receptors and steroidogenic enzymes, whereas some other genes were overexpressed in FLSs compared to the adult ovary. The E-Cadherin protein, which is involved in cell-to-cell interactions, was also expressed ectopically. Remarkably, it was seen that oocyte-like cells in the FLSs exhibited androgenetic genomic imprinting, which is ordinarily indicative of male GCs. Although the FLSs did not express male GC marker genes, the DNA methyltransferase, Dnmt3L, was expressed at an abnormally high level. Furthermore, the expression of sex determination factors was ambiguous in FLSs as both male and female determinants were expressed weakly. These data suggest that the developmental dysfunction of the ESC-derived FLSs may be attributable to aberrant gene expression and genomic imprinting, possibly associated with uncertain sex determination in culture.


Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells.

  • Ângela Moreira‎ et al.
  • PloS one‎
  • 2015‎

Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: