Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,560 papers

Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

  • Lars Hummitzsch‎ et al.
  • Experimental cell research‎
  • 2014‎

Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (P<0.05) in CM. In CaCo-2 cultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (P<0.001) and elevated levels of hydrogen peroxide (P<0.01). Incubation of CaCo-2 cells with CM reduced the hypoxia-induced signs of cell damage and LDH release (P<0.01) and abrogated the hypoxia-induced increase of hydrogen peroxide. These events were associated with an enhanced phosphorylation status of the prosurvival kinase Erk1/2 (P<0.05) but not Akt and STAT-5. Taken together, CM of hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. The established culture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC.


Stem cell conditioned culture media attenuated albumin-induced epithelial-mesenchymal transition in renal tubular cells.

  • Junping Hu‎ et al.
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology‎
  • 2015‎

Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells.


The influence of serum substituents on serum-free Vero cell conditioned culture media manufactured from Dulbecco's modified Eagle medium in mouse embryo culture.

  • Jong-Seon Lee‎ et al.
  • Obstetrics & gynecology science‎
  • 2013‎

This study was conducted to examine the influences of supplementation of the serum substituents and available period of serum-free Vero cell conditioned media (SF-VCM) manufactured from Dulbecco's modified Eagle medium cultured with Vero cells for in vitro development of mouse preimplantation embryos.


Effects of adipocyte-conditioned cell culture media on S1P treatment of human triple-negative breast cancer cells.

  • Xiyuan Wu‎ et al.
  • PloS one‎
  • 2023‎

Sphingosine-1-phosphate (S1P) is a potent sphingolipid metabolite that regulates a wide range of biological functions such as cell proliferation, cell apoptosis and angiogenesis. Its cellular level is elevated in breast cancer, which, in turn, would promote cancer cell proliferation, survival, growth and metastasis. However, the cellular concentration of S1P is normally in the low nanomolar range, and our previous studies showed that S1P selectively induced apoptosis of breast cancer cells at high concentrations (high nanomolar to low micromolar). Thus, local administration of high-concentration S1P alone or in combination of chemotherapy agents could be used to treat breast cancer. The breast mainly consists of mammary gland and connective tissue stroma (adipose), which are dynamically interacting each other. Thus, in the current study, we evaluated how normal adipocyte-conditioned cell culture media (AD-CM) and cancer-associated adipocyte-conditioned cell culture media (CAA-CM) would affect high-concentration S1P treatment of triple-negative breast cancer (TNBC) cells. Both AD-CM and CAA-CM may suppress the anti-proliferative effect and reduce nuclear alteration/apoptosis caused by high-concentration S1P. This implicates that adipose tissue is likely to be detrimental to local high-concentration S1P treatment of TNBC. Because the interstitial concentration of S1P is about 10 times higher than its cellular level, we undertook a secretome analysis to understand how S1P would affect the secreted protein profile of differentiated SGBS adipocytes. At 100 nM S1P treatment, we identified 36 upregulated and 21 downregulated secretome genes. Most of these genes are involved in multiple biological processes. Further studies are warranted to identify the most important secretome targets of S1P in adipocytes and illustrate the mechanism on how these target proteins affect S1P treatment of TNBC.


A Simple Method for In-Depth Proteome Analysis of Mammalian Cell Culture Conditioned Media Containing Fetal Bovine Serum.

  • Ren Nakamura‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

A conditioned medium of a cell culture is widely used for various biological applications and frequently analyzed to characterize the functional proteins responsible for observed biological functions. However, a large number of abundant proteins in fetal bovine serum (FBS), usually included in the conditioned medium of a mammalian cell culture medium, hampers in-depth proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For a deep proteomic analysis of a conditioned medium by LC-MS/MS, we developed a simple albumin depletion approach coupled with data-independent acquisition (DIA)-mode LC-MS/MS for the conditioned medium of mammalian cells in this study. The results showed that this approach enabled the detection of more than 3700 cell-derived proteins in the cell culture supernatant containing FBS. We further demonstrated the potency of this approach by analyzing proteins in the conditioned media of HeLa cells with and without tumor necrosis factor (TNF) stimulation: >40 differentially accumulated proteins, including four cytokines, upon TNF stimulation were identified in the culture media, which were hardly detected by conventional proteome approaches in the literature.


Selecting Normalizers for MicroRNA RT-qPCR Expression Analysis in Murine Preimplantation Embryos and the Associated Conditioned Culture Media.

  • David C Hawke‎ et al.
  • Journal of developmental biology‎
  • 2023‎

Normalizing RT-qPCR miRNA datasets that encompass numerous preimplantation embryo stages requires the identification of miRNAs that may be used as stable reference genes. A need has also arisen for the normalization of the accompanying conditioned culture media as extracellular miRNAs may serve as biomarkers of embryo developmental competence. Here, we evaluate the stability of six commonly used miRNA normalization candidates, as well as small nuclear U6, using five different means of evaluation (BestKeeper, NormFinder, geNorm, the comparative Delta Ct method and RefFinder comprehensive analysis) to assess their stability throughout murine preimplantation embryo development from the oocyte to the late blastocyst stages, both in whole embryos and the associated conditioned culture media. In descending order of effectiveness, miR-16, miR-191 and miR-106 were identified as the most stable individual reference miRNAs for developing whole CD1 murine preimplantation embryos, while miR-16, miR-106 and miR-103 were ideal for the conditioned culture media. Notably, the widely used U6 reference was among the least appropriate for normalizing both whole embryo and conditioned media miRNA datasets. Incorporating multiple reference miRNAs into the normalization basis via a geometric mean was deemed beneficial, and combinations of each set of stable miRNAs are further recommended, pending validation on a per experiment basis.


Inhibition of LPS‑induced NLRP3 inflammasome activation by stem cell‑conditioned culture media in human gingival epithelial cells.

  • Hong Li‎ et al.
  • Molecular medicine reports‎
  • 2023‎

Interleukin (IL)‑1β is a pathogenic factor associated with the destruction of periodontal tissue in periodontitis. IL‑1β processing is regulated by cytosolic machinery known as the inflammasome. Porphyromonas gingivalis infection and lipopolysaccharide (LPS) have an important role in the destruction of periodontal tissue in periodontitis. P. gingivalis infection and LPS have been reported to activate the NOD‑like receptor family pyrin domain‑containing protein 3 (NLRP3) inflammasome in human oral cells. Stem cell therapy exhibits anti‑inflammatory effects and stem cell‑conditioned culture media (SCM) shows similar beneficial effects. The present study tested the hypothesis that SCM inhibits activation of the inflammasome and protects human gingival epithelial cells (GECs) against LPS‑induced inflammatory damage. Human GECs were treated with or without LPS plus SCM or control cell media. NLPR3 inflammasome components and inflammatory factors were measured by western blotting and immunofluorescence. The present study revealed that LPS induced an increase in the expression of inflammasome components, NLRP3, apoptosis‑associated speck‑like protein containing a caspase recruitment domain (ASC) and caspase‑1. Co‑immunoprecipitation revealed increased binding of NLRP3 and ASC, and immunofluorescence showed an increased co‑localization of ASC and caspase‑1, suggesting that LPS stimulated assembly of the NLRP3 inflammasome. SCM inhibited the overexpression and assembly of NLRP3 inflammasome components induced by LPS. Furthermore, SCM blocked the increase in IL‑1β production induced by LPS and inhibited the translocation of the inflammatory factor, NF‑κB, into the nuclei. Consequently, SCM protected cells against LPS‑induced damage, as suggested by the recovery of disturbed E‑cadherin staining pattern, which indicates a disruption in epithelial integrity. In conclusion, treatment with SCM may attenuate LPS‑induced inflammatory damage in human GECs via inhibition of NLRP3 inflammasome activation, suggesting a potential therapeutic use for SCM.


Expressed proteins and activated pathways in conditioned embryo culture media from IVF patients are diverse according to infertility factors.

  • Tatiana Cs Bonetti‎ et al.
  • JBRA assisted reproduction‎
  • 2019‎

Given that the embryo culture medium secretome reflects the embryo development, we hypothesize that protein profiles are affected according to infertility factors, which can be responsible for detrimental embryonic developmental competence. The aim of this study was to screen the protein profile of conditioned embryo culture media in patients presenting deep infiltrating endometriosis (ENDO) and polycystic ovarian syndrome (PCOS) undergoing IVF, by proteomics approaches. The control group was constituted by tubal factor patients.


A feeder-free culture using autogeneic conditioned medium for undifferentiated growth of human embryonic stem cells: comparative expression profiles of mRNAs, microRNAs and proteins among different feeders and conditioned media.

  • Zong-Yun Tsai‎ et al.
  • BMC cell biology‎
  • 2010‎

Human embryonic stem (hES) cell lines were derived from the inner cell mass of human blastocysts, and were cultured on mouse embryonic fibroblast (MEF) feeder to maintain undifferentiated growth, extensive renewal capacity, and pluripotency. The hES-T3 cell line with normal female karyotype was previously used to differentiate into autogeneic fibroblast-like cells (T3HDF) as feeder to support the undifferentiated growth of hES-T3 cells (T3/HDF) for 14 passages.


Supplementation with IL-6 and Muscle Cell Culture Conditioned Media Enhances Myogenic Differentiation of Adipose Tissue-Derived Stem Cells through STAT3 Activation.

  • Eunhui Seo‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Mature skeletal muscle cells cannot be expanded in culture systems. Therefore, it is difficult to construct an in vitro model for muscle diseases. To establish an efficient protocol for myogenic differentiation of human adipose tissue-derived stem cells (hADSCs), we investigated whether addition of IL-6 and/or myocyte-conditioned media (CM) to conventional differentiation media can shorten the differentiation period. hADSCs were differentiated to myocytes using the conventional protocol or modified with the addition of 25 pg/mL IL-6 and/or C2C12 CM (25% v/v). The expression of MyoD and myogenine mRNA was significantly higher at 5⁻6 days after differentiation using the modified protocol than with the conventional protocol. mRNA and protein expression of myosin heavy chain, a marker of myotubes, was significantly upregulated at 28 and 42 days of differentiation using the modified protocol, and the level achieved after a 4-week differentiation period was similar to that achieved at 6 weeks using the conventional protocol. The expression of p-STAT3 was significantly increased when the modified protocol was used. Similarly, addition of colivelin, a STAT3 activator, instead of IL-6 and C2C12 CM, promoted the myogenic differentiation of ADSCs. The modified protocol improved differentiation efficiency and reduced the time required for differentiation of myocytes. It might be helpful to save cost and time when preparing myocytes for cell therapies and drug discovery.


Human Osteoblast-Conditioned Media Can Influence Staphylococcus aureus Biofilm Formation.

  • Fabien Lamret‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Osteoblasts are bone-forming and highly active cells participating in bone homeostasis. In the case of osteomyelitis and more specifically prosthetic joint infections (PJI) for which Staphylococcus aureus (S. aureus) is mainly involved, the interaction between osteoblasts and S. aureus results in impaired bone homeostasis. If, so far, most of the studies of osteoblasts and S. aureus interactions were focused on osteoblast response following direct interactions with co-culture and/or internalization models, less is known about the effect of osteoblast factors on S. aureus biofilm formation. In the present study, we investigated the effect of human osteoblast culture supernatant on methicillin sensitive S. aureus (MSSA) SH1000 and methicillin resistant S. aureus (MRSA) USA300. Firstly, Saos-2 cell line was incubated with either medium containing TNF-α to mimic the inflammatory periprosthetic environment or with regular medium. Biofilm biomass was slightly increased for both strains in the presence of culture supernatant collected from Saos-2 cells, stimulated or not with TNF-α. In such conditions, SH1000 was able to develop microcolonies, suggesting a rearrangement in biofilm organization. However, the biofilm matrix and regulation of genes dedicated to biofilm formation were not substantially changed. Secondly, culture supernatant obtained from primary osteoblast culture induced varied response from SH1000 strain depending on the different donors tested, whereas USA300 was only slightly affected. This suggested that the sensitivity to bone cell secretions is strain dependent. Our results have shown the impact of osteoblast secretions on bacteria and further identification of involved factors will help to manage PJI.


Impact of Dual Cell Co-culture and Cell-conditioned Media on Yield and Function of a Human Olfactory Cell Line for Regenerative Medicine.

  • Rachael Wood‎ et al.
  • Bioengineering (Basel, Switzerland)‎
  • 2020‎

Olfactory ensheathing cells (OECs) are a promising candidate therapy for neuronal tissue repair. However, appropriate priming conditions to drive a regenerative phenotype are yet to be determined. We first assessed the effect of using a human fibroblast feeder layer and fibroblast conditioned media on primary rat olfactory mucosal cells (OMCs). We found that OMCs cultured on fibroblast feeders had greater expression of the key OEC marker p75NTR (25.1 ± 10.7 cells/mm2) compared with OMCs cultured on laminin (4.0 ± 0.8 cells/mm2, p = 0.001). However, the addition of fibroblast-conditioned media (CM) resulted in a significant increase in Thy1.1 (45.9 ± 9.0 cells/mm2 versus 12.5 ± 2.5 cells/mm2 on laminin, p = 0.006), an undesirable cell marker as it is regarded to be a marker of contaminating fibroblasts. A direct comparison between human feeders and GMP cell line Ms3T3 was then undertaken. Ms3T3 cells supported similar p75NTR levels (10.7 ± 5.3 cells/mm2) with significantly reduced Thy1.1 expression (4.8 ± 2.1 cells/mm2). Ms3T3 cells were used as feeder layers for human OECs to determine whether observations made in the rat model were conserved. Examination of the OEC phenotype (S100β expression and neurite outgrowth from NG108-15 cells) revealed that co-culture with fibroblast feeders had a negative effect on human OECs, contrary to observations of rat OECs. CM negatively affected rat and human OECs equally. When the best and worst conditions in terms of supporting S100β expression were used in NG108-15 neuron co-cultures, those with the highest S100β expression resulted in longer and more numerous neurites (22.8 ± 2.4 μm neurite length/neuron for laminin) compared with the lowest S100β expression (17.9 ± 1.1 μm for Ms3T3 feeders with CM). In conclusion, this work revealed that neither dual co-culture nor fibroblast-conditioned media support the regenerative OEC phenotype. In our case, a preliminary rat model was not predictive of human cell responses.


Targeting conditioned media dependencies and FLT-3 in chronic lymphocytic leukemia.

  • Salma Parvin‎ et al.
  • Blood advances‎
  • 2023‎

The importance of the stromal microenvironment in chronic lymphocytic leukemia (CLL) pathogenesis and drug resistance is well established. Despite recent advances in CLL therapy, identifying novel ways to disrupt interactions between CLL and its microenvironment may identify new combination partners for the drugs currently in use. To understand the role of microenvironmental factors on primary CLL cells, we took advantage of an observation that conditioned media (CM) collected from stroma was protective of CLL cells from spontaneous cell death ex vivo. The cytokine in the CM-dependent cells that most supports CLL survival in short-term ex vivo culture was CCL2. Pretreatment of CLL cells with anti-CCL2 antibody enhanced venetoclax-mediated killing. Surprisingly, we found a group of CLL samples (9/23 cases) that are less likely to undergo cell death in the absence of CM support. Functional studies revealed that CM-independent (CMI) CLL cells are less sensitive to apoptosis than conventional stroma-dependent CLL. In addition, a majority of the CMI CLL samples (80%) harbored unmutated immunoglobulin heavy-chain variable (IGHV) region. Bulk-RNA sequence analysis revealed upregulation of the focal adhesion and RAS signaling pathways in this group, along with expression of fms-like tyrosine kinase 3 (FLT3) and CD135. Treatment with FLT3 inhibitors caused a significant reduction in cell viability among CMI samples. In summary, we were able to discriminate and target 2 biologically distinct subgroups of CLL based on CM dependence with distinct microenvironmental vulnerabilities.


Monocytes conditioned media stimulate fibronectin expression and spreading of inflammatory breast cancer cells in three-dimensional culture: A mechanism mediated by IL-8 signaling pathway.

  • Mona M Mohamed‎
  • Cell communication and signaling : CCS‎
  • 2012‎

Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer characterized by invasion of carcinoma cells into dermal lymphatic vessels where they form tumor emboli over expressing adhesion molecule E-cadherin. Although invasion and metastasis are dynamic processes controlled by complex interaction between tumor cells and microenvironment the mechanisms by which soluble mediators may regulate motility and invasion of IBC cells are poorly understood. The present study investigated the effect of media conditioned by human monocytes U937 secreted cytokines, chemokines and growth factors on the expression of adhesion molecules E-cadherin and fibronectin of human IBC cell line SUM149. Furthermore, cytokines signaling pathway involved were also identified.


MSCs conditioned media and umbilical cord blood plasma metabolomics and composition.

  • Tiago Pereira‎ et al.
  • PloS one‎
  • 2014‎

Human mesenchymal stem cells (hMSCs) from umbilical cord (UC) blood (UCB) and matrix are tested clinically for a variety of pathologies but in vitro expansion using culture media containing fetal bovine serum (FBS) is essential to achieve appropriate cell numbers for clinical use. Human UCB plasma (hUCBP) can be used as a supplement for hMSCs culture, since UCB is rich in soluble growth factors and due to worldwide increased number of cryopreserved UCB units in public and private banks, without the disadvantages listed for FBS. On the other hand, the culture media enriched in growth factors produced by these hMSCs in expansion (Conditioned medium--CM) can be an alternative to hMSCs application. The CM of the hMSCs from the UC might be a better therapeutic option compared to cell transplantation, as it can benefit from the local tissue response to the secreted molecules without the difficulties and complications associated to the engraftment of the allo- or xeno-transplanted cells. These facts drove us to know the detailed composition of the hUCBP and CM, by 1H-NMR and Multiplexing LASER Bead Technology. hUCBP is an adequate alternative for the FBS and the CM and hUCBP are important sources of growth factors, which can be used in MSCs-based therapies. Some of the major proliferative, chemotactic and immunomodulatory soluble factors (TGF-β, G-CSF, GM-CSF, MCP-1, IL-6, IL-8) were detected in high concentrations in CM and even higher in hUCBP. The results from 1H-NMR spectroscopic analysis of CM endorsed a better understanding of hMSCs metabolism during in vitro culture, and the relative composition of several metabolites present in CM and hUCBP was obtained. The data reinforces the potential use of hUCBP and CM in tissue regeneration and focus the possible use of hUCBP as a substitute for the FBS used in hMSCs in vitro culture.


Placental Cell Conditioned Media Modifies Hematopoietic Stem Cell Transcriptome In Vitro.

  • Sean M Harris‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Hematopoietic stem cells are cells that differentiate into all blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal and fetal health, cross-talk between placental cells and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects.


Conditioned media of mouse macrophages modulates neuronal dynamics in mouse hippocampal cells.

  • Ayla Batu Öztürk‎ et al.
  • International immunopharmacology‎
  • 2023‎

Many neurodegenerative diseases display both neuroinflammation and impaired neuron production in hippocampus. Although immunotherapeutic strategies indicate a promising avenue for combating neuroinflammation-induced diseases, directly targeting microglia, principle immune cells of CNS for such therapeutic purposes might be problematic due to invasive procedures. Instructing monocytes/macrophages from the periphery can be a less invasive and advantageous strategy compared to reaching microglia. But interplay between CNS neurons and macrophages even under normal conditions is poorly understood. To explore the experimental platform of how CNS derived neuronal cells respond to overall soluble factors of a non-CNS derived immune cell type, we introduced the conditioned media (CM) of unstimulated, and lipopolysaccharide stimulated RAW264.7 mouse macrophages to immortalized HT-22 mouse hippocampal cells during and after they were exposed to neuronal differentiation media. First, we recorded the cell viability of HT-22 cell study groups by using a real time cell analyzer. Then, we assessed the immunocytochemical expression of CR and CB proteins and mRNA levels of Ascl1, Bdnf, CB, Grn, Nrf2 and Rac1 genes via semi quantitative image analysis and q-RT-PCR among the different groups of HT-22 cells. Real time cell monitoring provided a solid physiological evidence regarding how various cell culture treatments affected the cell viability of HT-22 cells over time. Our further findings suggested that culturing HT-22 cells with unstimulated CM of macrophages markedly increased the immunocytochemical expression of CR and mRNA expression of Ascl1, Bdnf, CB and Grn genes, while the latter media resulted in decreases of those expressions. Overall, our results imply that HT-22 cells are meaningfully responsive to the secretome of RAW264.7 macrophages and using the interaction of macrophage with CNS derived neuronal cells is an instructive platform for deciphering the molecular mechanisms of cellular communication between immune system cells and neurons.


The Effect of Conditioned Media of Stem Cells Derived from Lipoma and Adipose Tissue on Macrophages' Response and Wound Healing in Indirect Co-culture System In Vitro.

  • Sanja Stojanović‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Immunomodulatory and wound healing activities of adipose-derived stem cells (ADSCs) have been reported in various in vitro and in vivo experimental models suggesting their beneficial role in regenerative medicine and treatments of inflammatory-related disorders. Lipoma-derived stem cells (LDSCs) were reported as a potential tool in regenerative medicine due to the similarity with ADSCs but we have previously shown that LDSCs have different differentiation capacity than ADSCs despite a similar mesenchymal phenotype. To further analyze the potential differences and/or similarities between those two stem cell types, in the present study we examined the macrophages (MΦs)' response, immunomodulatory and wound healing effect of conditioned media (CM) of LDSCs and ADSCs in indirect co-culture system in vitro. We confirmed similar mesenchymal phenotype and stemness state of LDSCs and ADSCs but indicated differences in expression of some inflammatory-related genes. Anti-inflammatory potential of CM of LDSCs and ADSCs, with pronounced effect of LDSCs, in unstimulated RAW 264.7 MΦs was evaluated by decrease in Tnf and increase in Il10 gene expression, which was confirmed by corresponding cytokines' secretion analysis. Conditioned media of both LDSCs and ADSCs led to the functional activation of MΦs, with slightly more pronounced effect of CM of LDSCs, while both stimulated wound healing in vitro in a similar manner. Results of this study suggest that LDSCs secrete soluble factors like ADSCs and therefore may have a potential for application in regenerative medicine, due to immunomodulatory and wound healing activity, and indicate that LDSCs through secretome may interact with other cells in lipoma tissue.


Fibroblast-Conditioned Media Enhance the Yield of Microglia Isolated from Mixed Glial Cultures.

  • Jian Hu‎ et al.
  • Cellular and molecular neurobiology‎
  • 2023‎

Microglia are the main immune cells of the central nervous system (CNS) and comprise various model systems used to investigate inflammatory mechanisms in CNS disorders. Currently, shaking and mild trypsinization are widely used microglial culture methods; however, the problems with culturing microglia include low yield and a time-consuming process. In this study, we replaced normal culture media (NM) with media containing 25% fibroblast-conditioned media (F-CM) to culture mixed glia and compared microglia obtained by these two methods. We found that F-CM significantly improved the yield and purity of microglia and reduced the total culture time of mixed glia. The microglia obtained from the F-CM group showed longer ramified morphology than those from the NM group, but no difference was observed in cell size. Microglia from the two groups had similar phagocytic function and baseline phenotype markers. Both methods yielded microglia were responsive to various stimuli such as lipopolysaccharide (LPS), interferon-γ (IFN-γ), and interleukin-4 (IL-4). The current results suggest that F-CM affect the growth of primary microglia in mixed glia culture. This method can produce a high yield of primary microglia within a short time and may be a convenient method for researchers to investigate inflammatory mechanisms and some CNS disorders.


An Optimized Approach to Recover Secreted Proteins from Fibroblast Conditioned-Media for Secretomic Analysis.

  • Bastien Paré‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2016‎

The proteins secreted by a particular type of cell, the secretome, play important roles in the regulation of many physiological processes via paracrine/autocrine mechanisms, and they are of increasing interest to help understanding rare diseases and to identify potential biomarkers and therapeutic targets. To facilitate ongoing research involving secreted proteins, we revisited cell culture protocols and whole secreted protein enrichment protocols. A reliable method for culturing and precipitating secreted protein from patient-derived fibroblast conditioned-medium was established. The method is based on the optimization of cell confluency and incubation time conditions. The well-established carrier-based TCA-DOC protein precipitation method was consistently found to give higher protein recovery yield. According to our results, we therefore propose that protein enrichment should be performed by TCA-DOC precipitation method after 48 h at 95% of confluence in a serum-deprived culture medium. Given the importance of secreted proteins as a source to elucidate the pathogenesis of rare diseases, especially neurological disorders, this approach may help to discover novel candidate biomarkers with potential clinical significance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: