Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models.

  • Lina Han‎ et al.
  • Haematologica‎
  • 2020‎

The pathogenesis of acute myeloid leukemia (AML) involves serial acquisition of mutations controlling several cellular processes, requiring combination therapies affecting key downstream survival nodes in order to treat the disease effectively. The BCL2 selective inhibitor venetoclax has potent anti-leukemia efficacy; however, resistance can occur due to its inability to inhibit MCL1, which is stabilized by the MAPK pathway. In this study, we aimed to determine the anti-leukemia efficacy of concomitant targeting of the BCL2 and MAPK pathways by venetoclax and the MEK1/2 inhibitor cobimetinib, respectively. The combination demonstrated synergy in seven of 11 AML cell lines, including those resistant to single agents, and showed growth-inhibitory activity in over 60% of primary samples from patients with diverse genetic alterations. The combination markedly impaired leukemia progenitor functions, while maintaining normal progenitors. Mass cytometry data revealed that BCL2 protein is enriched in leukemia stem/progenitor cells, primarily in venetoclax-sensitive samples, and that cobimetinib suppressed cytokine-induced pERK and pS6 signaling pathways. Through proteomic profiling studies, we identified several pathways inhibited downstream of MAPK that contribute to the synergy of the combination. In OCI-AML3 cells, the combination downregulated MCL1 protein levels and disrupted both BCL2:BIM and MCL1:BIM complexes, releasing BIM to induce cell death. RNA sequencing identified several enriched pathways, including MYC, mTORC1, and p53 in cells sensitive to the drug combination. In vivo, the venetoclax-cobimetinib combination reduced leukemia burden in xenograft models using genetically engineered OCI-AML3 and MOLM13 cells. Our data thus provide a rationale for combinatorial blockade of MEK and BCL2 pathways in AML.


Multiple Plasmid Vectors Mediate the Spread of fosA3 in Extended-Spectrum-β-Lactamase-Producing Enterobacterales Isolates from Retail Vegetables in China.

  • Luchao Lv‎ et al.
  • mSphere‎
  • 2020‎

The plasmid-mediated fosfomycin resistance gene fosA3 has been detected in Enterobacterales from various sources but has rarely been reported in vegetables. In this study, the aim was to investigate the prevalence of and, subsequently, to characterize fosA3-positive Enterobacterales isolates from retail vegetables. Seventeen (7.3%) fosA3-carrying strains were identified from 233 extended-spectrum-β-lactamase-producing Enterobacterales isolates from vegetables. All 17 isolates, including six Escherichia coli, seven Klebsiella pneumoniae, two Raoultella ornithinolytica, and two Citrobacter freundii isolates, carried blaCTX-M S1-nuclease pulsed-field gel electrophoresis (S1-PFGE) and hybridization confirmed that the fosA3 genes in 16 isolates were located on plasmids ranging in size from ∼40 kb to ∼250 kb, except one located on chromosome of C. freundii All the fosA3-carrying plasmids from 16 fosA3-positive isolates were successfully transferred into the recipient bacteria by transformation or conjugation. In agreement with data determined with isolates from food animals, the IncHI2/ST3 and IncN-F33:A-:B-/F33:A-:B plasmids were the main vectors of fosA3 in E. coli Additionally, F24:A-:B1, IncFIIK-IncR, IncFIIS, IncR, and two untypeable plasmids were found for the first time to be vectors for fosA3 in Enterobacterales The genetic contexts of fosA3 in 15 Enterobacterales isolates differed due to insertion and/or loss of molecular modules mediated by mobile elements. However, all fosA3 genes were flanked by IS26, as commonly observed in other fosA3-carrying plasmids. Here, we report a high rate of detection of fosA3 genes, mediated by multiple plasmid vectors, in ESBL-producing Enterobacterales from retail vegetables. FosA3-producing Enterobacterales could be transmitted to the human body by direct contact or consumption of vegetables, which might pose a potential threat to public health.IMPORTANCE This report provides important information on the transmission and epidemiology of fosA3 among Enterobacterales isolates from vegetables. The rate of occurrence of fosA3 in ESBL-producing Enterobacterales from retail vegetables is high, and fosA3 was found to be carried by diverse plasmids. Some novel genetic contexts of fosA3 and novel fosA3-carrying plasmids, including several plasmid types common in K. pneumoniae, were identified, increasing the number of known transfer vectors for the fosA3 gene and reflecting the complexity of fosA3 transmission in Enterobacterales The capture of fosA3 by the resident plasmid of K. pneumoniae will accelerate the spread of fosA3 in K. pneumoniae, one of the most pathogenic species in clinical medicine. Considering the clinical importance of fosfomycin, and the fact that vegetables are directly consumed, the fosfomycin resistance genes present a risk of transmission to the human body through the food chain and thus pose a threat to public health.


Clonal Spread of Escherichia coli ST93 Carrying mcr-1-Harboring IncN1-IncHI2/ST3 Plasmid Among Companion Animals, China.

  • Jing Wang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The purpose of this study was to investigate the occurrence of plasmid-mediated colistin resistance gene mcr-1 in Enterobacteriaceae isolates from companion animals in Guangzhou, China. Enterobacteriaceae isolated from 180 samples collected from cats and dogs were screened for mcr-1 by PCR and sequencing. MCR-1-producing isolates were further characterized by multilocus sequence typing and pulsed-field gel electrophoresis (PFGE). Plasmid characterization was performed by conjugation, replicon typing, S1-PFGE, and Southern blot hybridization. Plasmid pHN6DS2 as a representative IncN1-IncHI2/ST3 plasmid from ST93 E. coli was fully sequenced. pHN6DS2-like plasmids were screened by PCR-mapping and sequencing. The mcr-1 gene was detected in 6.25% (8/128) Escherichia coli isolates, of which, five belonged to E. coli ST93 and had identical PFGE patterns, resistance profiles and resistance genes. mcr-1 genes were located on ∼244.4 kb plasmids (n = 6), ∼70 kb plasmids, and ∼60 kb plasmids, respectively. Among them, five mcr-1-carrying plasmids were successfully transferred to recipient by conjugation experiments, and were classified as IncN1-IncHI2/ST3 (∼244.4 kb, n = 4, all obtained from E. coli ST93), and IncI2 (∼70 kb, n = 1), respectively. Plasmid pHN6DS2 contained a typical IncHI2-type backbone, with IncN1 segment (ΔrepA-Iterons I-gshB-ΔIS1294) inserted into the multiresistance region, and was similar to other mcr-1-carrying IncHI2/ST3 plasmids from Enterobacteriaceae isolates of various origins in China. The remaining five mcr-1-bearing plasmids with sizes of ∼244.4 kb were identified to be pHN6DS2-like plasmids. In conclusion, clonal spread of ST93 E. coli isolates was occurred in companion animals in Guangzhou, China.


A Conjugative MDR pMG1-Like Plasmid Carrying the lsa(E) Gene of Enterococcus faecium With Potential Transmission to Staphylococcus aureus.

  • Xiao-Mei Yan‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

lsa(E) is a pleuromutilin, lincosamide, and streptogramin A (PLSA phenotype) resistance gene that was first described in S. aureus and was thought to have been transferred from Enterococcus sp. This study aimed to elucidate the prevalence of the lsa(E) gene among E. faecium isolates at a tertiary teaching hospital and to evaluate the transferability of the lsa(E) gene from E. faecium to S. aureus in vitro. A total of 96 E. faecium strains isolated from one hospital in Beijing in 2013 were analysed for quinupristin-dalfopristin (QDA) resistance genes, and multilocus sequence typing (MLST) was performed. The transferability of QDA resistance between ten E. faecium strains and four S. aureus strains was determined by filter mating. Genome sequencing of the transconjugant was performed. A total of 46 E. faecium isolates (46/96, 47.92%) tested positive for lsa(E), while two isolates (2/96, 2.08%) tested positive for lsa(A). Thirty-six lsa(E)-positive strains (36/46, 78.3%) belonged to ST78. Among 40 mating tests, lsa(E) was successfully transferred through one conjugation at a frequency of 1.125 × 10-7 transconjugants per donor. The QDA resistance of the transconjugant N7435-R3645 was expressed at a higher level (MIC = 16 mg/L) than that of the parent S. aureus strain (MIC = 0.38 mg/L). Next-generation sequencing (NGS) analysis of the transconjugant N7435-R3645 showed that the complete sequence of the lsa(E)-carrying plasmid pN7435-R3645 had a size of 92,396 bp and a G + C content of 33% (accession no. MT022086). The genetic map of pN7435-R3645 had high nucleotide similarity and shared the main open reading frame (ORF) features with two plasmids: E. faecium pMG1 (AB206333.1) and E. faecium LS170308 (CP025078.1). The rep gene of pN7435-R3645 showed 100% identity with that of pMG1, although it did not belong to the rep1-19 family but instead a unique rep family. Multiple antibiotic resistance genes, including lsa(E), aadE and lnu(B), erm(B), ant6-Ia, and lnu(B), were present on the plasmid. In conclusion, an lsa(E)-carrying plasmid that can be transferred by conjugation from E. faecium to S. aureus in vitro was identified. This multidrug resistance (MDR) pMG1-like plasmid may act as a vector in the dissemination of antimicrobial resistance among species.


Negative Co-stimulation Constrains T Cell Differentiation by Imposing Boundaries on Possible Cell States.

  • Spencer C Wei‎ et al.
  • Immunity‎
  • 2019‎

Co-stimulation regulates T cell activation, but it remains unclear whether co-stimulatory pathways also control T cell differentiation. We used mass cytometry to profile T cells generated in the genetic absence of the negative co-stimulatory molecules CTLA-4 and PD-1. Our data indicate that negative co-stimulation constrains the possible cell states that peripheral T cells can acquire. CTLA-4 imposes major boundaries on CD4+ T cell phenotypes, whereas PD-1 subtly limits CD8+ T cell phenotypes. By computationally reconstructing T cell differentiation paths, we identified protein expression changes that underlied the abnormal phenotypic expansion and pinpointed when lineage choice events occurred during differentiation. Similar alterations in T cell phenotypes were observed after anti-CTLA-4 and anti-PD-1 antibody blockade. These findings implicate negative co-stimulation as a key regulator and determinant of T cell differentiation and suggest that checkpoint blockade might work in part by altering the limits of T cell phenotypes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: