Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 57 papers

Method to represent the distribution of QTL additive and dominance effects associated with quantitative traits in computer simulation.

  • Xiaochun Sun‎ et al.
  • BMC bioinformatics‎
  • 2016‎

Computer simulation is a resource which can be employed to identify optimal breeding strategies to effectively and efficiently achieve specific goals in developing improved cultivars. In some instances, it is crucial to assess in silico the options as well as the impact of various crossing schemes and breeding approaches on performance for traits of interest such as grain yield. For this, a means by which gene effects can be represented in the genome model is critical.


A computer simulation analysis of the accuracy of partial genome sequencing and restriction fragment analysis in estimating genetic relationships: an application to papillomavirus DNA sequences.

  • Baozhen Qiao‎ et al.
  • BMC bioinformatics‎
  • 2004‎

Determination of genetic relatedness among microorganisms provides information necessary for making inferences regarding phylogeny. However, there is little information available on how well the genetic relationships inferred from different genotyping methods agree with true genetic relationships. In this report, two genotyping methods - restriction fragment analysis (RFA) and partial genome DNA sequencing - were each compared to complete DNA sequencing as the definitive standard for classification.


GenPhyloData: realistic simulation of gene family evolution.

  • Joel Sjöstrand‎ et al.
  • BMC bioinformatics‎
  • 2013‎

PrIME-GenPhyloData is a suite of tools for creating realistic simulated phylogenetic trees, in particular for families of homologous genes. It supports generation of trees based on a birth-death process and--perhaps more interestingly--also supports generation of gene family trees guided by a known (synthetic or biological) species tree while accounting for events such as gene duplication, gene loss, and lateral gene transfer (LGT). The suite also supports a wide range of branch rate models enabling relaxation of the molecular clock.


STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.

  • Szymon Stoma‎ et al.
  • BMC bioinformatics‎
  • 2011‎

Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers.


SimSpliceEvol: alternative splicing-aware simulation of biological sequence evolution.

  • Esaie Kuitche‎ et al.
  • BMC bioinformatics‎
  • 2019‎

It is now well established that eukaryotic coding genes have the ability to produce more than one type of transcript thanks to the mechanisms of alternative splicing and alternative transcription. Because of the lack of gold standard real data on alternative splicing, simulated data constitute a good option for evaluating the accuracy and the efficiency of methods developed for splice-aware sequence analysis. However, existing sequence evolution simulation methods do not model alternative splicing, and so they can not be used to test spliced sequence analysis methods.


Stability of the core domain of p53: insights from computer simulations.

  • Arumugam Madhumalar‎ et al.
  • BMC bioinformatics‎
  • 2008‎

The tumour suppressor protein p53 protein has a core domain that binds DNA and is the site for most oncogenic mutations. This domain is quite unstable compared to its homologs p63 and p73. Two key residues in the core domain of p53 (Tyr236, Thr253), have been mutated in-silico, to their equivalent residues in p63 (Phe238 and Ile255) and p73 (Phe238 and Ile255), with subsequent increase in stability of p53. Computational studies have been performed to examine the basis of instability in p53.


FERN - a Java framework for stochastic simulation and evaluation of reaction networks.

  • Florian Erhard‎ et al.
  • BMC bioinformatics‎
  • 2008‎

Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary.


Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories.

  • Igor Chikalov‎ et al.
  • BMC bioinformatics‎
  • 2011‎

Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.


A unified framework for packing deformable and non-deformable subcellular structures in crowded cryo-electron tomogram simulation.

  • Sinuo Liu‎ et al.
  • BMC bioinformatics‎
  • 2020‎

Cryo-electron tomography is an important and powerful technique to explore the structure, abundance, and location of ultrastructure in a near-native state. It contains detailed information of all macromolecular complexes in a sample cell. However, due to the compact and crowded status, the missing edge effect, and low signal to noise ratio (SNR), it is extremely challenging to recover such information with existing image processing methods. Cryo-electron tomogram simulation is an effective solution to test and optimize the performance of the above image processing methods. The simulated images could be regarded as the labeled data which covers a wide range of macromolecular complexes and ultrastructure. To approximate the crowded cellular environment, it is very important to pack these heterogeneous structures as tightly as possible. Besides, simulating non-deformable and deformable components under a unified framework also need to be achieved.


High variance in reproductive success generates a false signature of a genetic bottleneck in populations of constant size: a simulation study.

  • Sean M Hoban‎ et al.
  • BMC bioinformatics‎
  • 2013‎

Demographic bottlenecks can severely reduce the genetic variation of a population or a species. Establishing whether low genetic variation is caused by a bottleneck or a constantly low effective number of individuals is important to understand a species' ecology and evolution, and it has implications for conservation management. Recent studies have evaluated the power of several statistical methods developed to identify bottlenecks. However, the false positive rate, i.e. the rate with which a bottleneck signal is misidentified in demographically stable populations, has received little attention. We analyse this type of error (type I) in forward computer simulations of stable populations having greater than Poisson variance in reproductive success (i.e., variance in family sizes). The assumption of Poisson variance underlies bottleneck tests, yet it is commonly violated in species with high fecundity.


Biotite: new tools for a versatile Python bioinformatics library.

  • Patrick Kunzmann‎ et al.
  • BMC bioinformatics‎
  • 2023‎

Biotite is a program library for sequence and structural bioinformatics written for the Python programming language. It implements widely used computational methods into a consistent and accessible package. This allows for easy combination of various data analysis, modeling and simulation methods.


PFASUM: a substitution matrix from Pfam structural alignments.

  • Frank Keul‎ et al.
  • BMC bioinformatics‎
  • 2017‎

Detecting homologous protein sequences and computing multiple sequence alignments (MSA) are fundamental tasks in molecular bioinformatics. These tasks usually require a substitution matrix for modeling evolutionary substitution events derived from a set of aligned sequences. Over the last years, the known sequence space increased drastically and several publications demonstrated that this can lead to significantly better performing matrices. Interestingly, matrices based on dated sequence datasets are still the de facto standard for both tasks even though their data basis may limit their capabilities. We address these aspects by presenting a new substitution matrix series called PFASUM. These matrices are derived from Pfam seed MSAs using a novel algorithm and thus build upon expert ground truth data covering a large and diverse sequence space.


Addressing inaccuracies in BLOSUM computation improves homology search performance.

  • Martin Hess‎ et al.
  • BMC bioinformatics‎
  • 2016‎

BLOSUM matrices belong to the most commonly used substitution matrix series for protein homology search and sequence alignments since their publication in 1992. In 2008, Styczynski et al. discovered miscalculations in the clustering step of the matrix computation. Still, the RBLOSUM64 matrix based on the corrected BLOSUM code was reported to perform worse at a statistically significant level than the BLOSUM62. Here, we present a further correction of the (R)BLOSUM code and provide a thorough performance analysis of BLOSUM-, RBLOSUM- and the newly derived CorBLOSUM-type matrices. Thereby, we assess homology search performance of these matrix-types derived from three different BLOCKS databases on all versions of the ASTRAL20, ASTRAL40 and ASTRAL70 subsets resulting in 51 different benchmarks in total. Our analysis is focused on two of the most popular BLOSUM matrices - BLOSUM50 and BLOSUM62.


High-throughput binding affinity calculations at extreme scales.

  • Jumana Dakka‎ et al.
  • BMC bioinformatics‎
  • 2018‎

Resistance to chemotherapy and molecularly targeted therapies is a major factor in limiting the effectiveness of cancer treatment. In many cases, resistance can be linked to genetic changes in target proteins, either pre-existing or evolutionarily selected during treatment. Key to overcoming this challenge is an understanding of the molecular determinants of drug binding. Using multi-stage pipelines of molecular simulations we can gain insights into the binding free energy and the residence time of a ligand, which can inform both stratified and personal treatment regimes and drug development. To support the scalable, adaptive and automated calculation of the binding free energy on high-performance computing resources, we introduce the High-throughput Binding Affinity Calculator (HTBAC). HTBAC uses a building block approach in order to attain both workflow flexibility and performance.


Weighted protein residue networks based on joint recurrences between residues.

  • Wael I Karain‎ et al.
  • BMC bioinformatics‎
  • 2015‎

Weighted and un-weighted protein residue networks can predict key functional residues in proteins based on the closeness centrality C and betweenness centrality B values for each residue. A static snapshot of the protein structure, and a cutoff distance, are used to define edges between the network nodes. In this work we apply the weighted network approach to study the β-Lactamase Inhibitory Protein (BLIP). Joint recurrences extracted from molecular dynamics MD trajectory positions of the protein residue carbon alpha atoms are used to define edge weights between nodes, and no cutoff distance is used. The results for B and C from our approach are compared with those extracted from an un-weighted network, and a weighted network that uses interatomic contacts to define edge weights between nodes, respectively.


CiliateGEM: an open-project and a tool for predictions of ciliate metabolic variations and experimental condition design.

  • Alessio Mancini‎ et al.
  • BMC bioinformatics‎
  • 2018‎

The study of cell metabolism is becoming central in several fields such as biotechnology, evolution/adaptation and human disease investigations. Here we present CiliateGEM, the first metabolic network reconstruction draft of the freshwater ciliate Tetrahymena thermophila. We also provide the tools and resources to simulate different growth conditions and to predict metabolic variations. CiliateGEM can be extended to other ciliates in order to set up a meta-model, i.e. a metabolic network reconstruction valid for all ciliates. Ciliates are complex unicellular eukaryotes of presumably monophyletic origin, with a phylogenetic position that is equal from plants and animals. These cells represent a new concept of unicellular system with a high degree of species, population biodiversity and cell complexity. Ciliates perform in a single cell all the functions of a pluricellular organism, including locomotion, feeding, digestion, and sexual processes.


Detecting transitions in protein dynamics using a recurrence quantification analysis based bootstrap method.

  • Wael I Karain‎
  • BMC bioinformatics‎
  • 2017‎

Proteins undergo conformational transitions over different time scales. These transitions are closely intertwined with the protein's function. Numerous standard techniques such as principal component analysis are used to detect these transitions in molecular dynamics simulations. In this work, we add a new method that has the ability to detect transitions in dynamics based on the recurrences in the dynamical system. It combines bootstrapping and recurrence quantification analysis. We start from the assumption that a protein has a "baseline" recurrence structure over a given period of time. Any statistically significant deviation from this recurrence structure, as inferred from complexity measures provided by recurrence quantification analysis, is considered a transition in the dynamics of the protein.


Analysis on relationship between extreme pathways and correlated reaction sets.

  • Yanping Xi‎ et al.
  • BMC bioinformatics‎
  • 2009‎

Constraint-based modeling of reconstructed genome-scale metabolic networks has been successfully applied on several microorganisms. In constraint-based modeling, in order to characterize all allowable phenotypes, network-based pathways, such as extreme pathways and elementary flux modes, are defined. However, as the scale of metabolic network rises, the number of extreme pathways and elementary flux modes increases exponentially. Uniform random sampling solves this problem to some extent to study the contents of the available phenotypes. After uniform random sampling, correlated reaction sets can be identified by the dependencies between reactions derived from sample phenotypes. In this paper, we study the relationship between extreme pathways and correlated reaction sets.


BiSpark: a Spark-based highly scalable aligner for bisulfite sequencing data.

  • Seokjun Soe‎ et al.
  • BMC bioinformatics‎
  • 2018‎

Bisulfite sequencing is one of the major high-resolution DNA methylation measurement method. Due to the selective nucleotide conversion on unmethylated cytosines after treatment with sodium bisulfite, processing bisulfite-treated sequencing reads requires additional steps which need high computational demands. However, a dearth of efficient aligner that is designed for bisulfite-treated sequencing becomes a bottleneck of large-scale DNA methylome analyses.


Detecting gene breakpoints in noisy genome sequences using position-annotated colored de-Bruijn graphs.

  • Lisa Fiedler‎ et al.
  • BMC bioinformatics‎
  • 2023‎

Identifying the locations of gene breakpoints between species of different taxonomic groups can provide useful insights into the underlying evolutionary processes. Given the exact locations of their genes, the breakpoints can be computed without much effort. However, often, existing gene annotations are erroneous, or only nucleotide sequences are available. Especially in mitochondrial genomes, high variations in gene orders are usually accompanied by a high degree of sequence inconsistencies. This makes accurately locating breakpoints in mitogenomic nucleotide sequences a challenging task.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: