Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Bortezomib prevents the expression of MMP-13 and the degradation of collagen type 2 in human chondrocytes.

  • Weihua Hu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

The structural backbone of extracellular matrix in cartilage is the collagen fibril, which is mainly composed of type II collagen. A measurable increase in type II collagen denaturation and degradation has been found in early Osteoarthritis (OA). Pro-inflammatory cytokine such as TNF-α produced in OA cartilage induced the expression of matrix metalloproteinase-13 (MMP-13), which targets and degrades type II collagen. Bortezomib is a proteasome inhibitor approved by the FDA for treatment of multiple myeloma and mantel cell lymphoma. The effects of bortezomib in OA have not been reported before. In this study, we found that bortezomib is able to suppress the degradation of type II collagen induced by TNF-α in human chondrocytes. Mechanistically, bortezomib treatment inhibits the expression of IRF-1 through blunting JAK2/STAT1 pathway, thereby prevents the induction of MMP-13 as well as the degradation of type II collagen. Our findings suggest the therapeutic potentials of bortezomib in patients with OA.


TASR-1 regulates alternative splicing of collagen genes in chondrogenic cells.

  • Hiroshi Matsushita‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

During the differentiation of chondroprogenitors into mature chondrocytes, the alternative splicing of collagen genes switches from longer isoforms to shorter ones. To investigate the underlying mechanisms, we infected mouse ATDC5 chondroprogenitor cells with retrovirus for stable expression of two closely related SR splicing factors. RT-PCR analysis revealed that TASR-1, but not TASR-2, influenced alternative splicing of type II and type XI collagens in ATDC5 cells. The effect of TASR-1 on splicing could be reversed with the addition of insulin. Results from our microarray analysis of ATDC5 cells showed that TASR-1 and TASR-2 differentially affect genes involved in the differentiation of chondrocytes. Of special interest is the finding that TASR-1 could down-regulate expression of type X collagen, a hallmark of hypertrophic chondrocytes. Immunohistostaining demonstrated that TASR-1 protein is more abundantly expressed than TASR-2 in mouse articular chondrocytes, raising the possibility that TASR-1 might be involved in phenotype maintenance of articular chondrocytes.


Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta.

  • Rui-Qing He‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes.


Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells.

  • Toshiaki Ishizuka‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT(1)R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of mouse iPS cells with AT(1)R may enhance LIF-induced DNA synthesis, by augmenting the generation of superoxide and activating JAK/STAT3, and that AT(1)R stimulation may enhance Col IV-induced differentiation into mesodermal progenitor cells via p38 MAPK activation.


Transforming growth factor-β (TGF-β) induces the expression of chondrogenesis-related genes through TGF-β receptor II (TGFRII)-AKT-mTOR signaling in primary cultured mouse precartilaginous stem cells.

  • Cheng Li‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Precartilaginous stem cells (PSCs) are adult stem cells which could initiate chondrocytes and bone growth. In the current study, we purified PSCs from the neonate mice' perichondrial mesenchyme through immunomagnetic beads with the fibroblast growth factor receptor-3 (FGFR-3) antibody. Mouse PSCs were seeded and cultured, and their phenotype was confirmed by FGFR-3 over-expression. Transforming growth factor-β (TGF-β) was added to induce PSCs differentiation. TGF-β increased mRNA expression of chondrogenesis-related genes (collagen type II, Sox 9, and aggrecan) in the cultured PSCs, which was abolished by TGF-β receptor II (TGFRII) lentiviral shRNA depletion. TGF-β induced AKT activation in mouse PSCs, while the PI3K/AKT inhibitor (LY294002) and the AKT specific inhibitors (perifosine and MK-2206) largely suppressed TGF-β-induced collagen II, Sox 9, and aggrecan mRNA expression. Meanwhile, the mTOR complex 1 (mTORC1) blocker RAD001 or the mTORC1/2 dual inhibitor AZD-2014 also alleviated TGF-β-induced chondrogenesis-associated genes expression. Further, lentiviral shRNA depletion of SIN1 (a mTORC2 component) or mTOR inhibited TGF-β's effect in the mouse PSCs. In conclusion, our evidence suggests that TGF-β induces the expression of chondrogenesis-related genes through TGFRII-AKT-mTOR signaling in cultured mouse PSCs.


Thyroxine downregulates Sox9 and promotes chondrocyte hypertrophy.

  • Yasunori Okubo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

Thyroid hormones exert a profound effect on development, growth, and metabolism of skeleton. In the present study, we evaluated the effects of thyroxine (T4) and growth hormone (GH) on the terminal differentiation of rib growth plate chondrocytes in three-dimensional pellet culture. T4 (30ng/ml) stimulated the expressions of type II and X collagens, alkaline phosphatase (ALP) activity. On the other hand, the expression of chondrogenic transcription factor Sox9 in the T4 treatment group decreased significantly compared to the control group. T4 downregulates Sox9 and promotes hypertrophy. After day 7, T4 increases dramatically the synthesis of type X collagen mRNA, ALP activity, and cellular hypertrophy. Addition of GH does not modify the action of T4. Thus, T4 acts directly on chondrocytes. In conclusion, we demonstrated that T4 enhances the cellular and molecular events of terminal differentiation and hypertrophy of chondrocytes in the three-dimensional cultures.


Thyroid-specific gene expression in chondrocytes.

  • Toyoshi Endo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Previously, we demonstrated that Runx2 (Cbfa1/AML3), a chondrocyte-specific transcription factor, is expressed in thyroid glands of mice, where it stimulates expression of the thyroglobulin (Tg) gene. Here, we reverse transcribed thyroid transcription factor-1 (TTF-1), Pax-8, Tg, thyroid peroxidase (TPO) and Na(+)/I(-) symporter (NIS) cDNAs from mouse trachea and bronchus RNA samples, but were unable to recover these cDNAs from mouse liver RNA samples. Tg mRNA levels in trachea and bronchus were about 5.1% and 2.1% of those in thyroid glands. ATDC-5 cells, cultured chondrocytes, expressed about 30-fold more Tg mRNA than undifferentiated cells. Gel shift and Tg gene reporter assay revealed that TTF-1 stimulated Tg gene expression in these cells. These results indicate that chondrocytes turn on some aspects of the thyroid gene expression program and that TTF-1 plays important roles in Tg gene expression in chondrocyte.


mascRNA promotes macrophage apoptosis, inhibits osteoclast differentiation and attenuates disease progression in a murine model of arthritis.

  • Xuxu Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Macrophages play a crucial role in the pathogenesis of rheumatoid arthritis (RA) and have been considered as a therapeutic target of this disease. Here we show that mascRNA, a tRNA-like cytoplasmic small noncoding RNA, promoted RIPK1-dependent apoptosis (RDA) in RAW267.4 macrophages in response to the TAK1 inhibitor 5Z-7-oxozeaenol (5Z-7) alone as well as in combination with TNF. Moreover, mascRNA suppressed RANKL-induced expression of osteoclast marker genes and attenuated RANKL signaling. Using a murine model of collagen-induced arthritis (CIA), we demonstrated that mascRNA, administered either alone or in combination with 5Z-7, alleviated joint inflammation in CIA mice. Thus, mascRNA might be a promising agent for the treatment of RA.


Induction of chondrogenesis and expression of superficial zone protein (SZP)/lubricin by mesenchymal progenitors in the infrapatellar fat pad of the knee joint treated with TGF-beta1 and BMP-7.

  • Sang Yang Lee‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Superficial zone protein (SZP) is a key mediator of boundary lubrication of articular cartilage in joints. In this investigation, we made the unexpected discovery that SZP was expressed in infrapatellar fat pad (IFP) from bovine knee. Quantitative analysis of secreted proteins in the medium of the IFP stromal cells demonstrated a significant stimulation by TGF-beta1 and BMP-7. Real-time PCR analysis revealed the SZP expression was up-regulated by TGF-beta1 and BMP-7. Chondrogenically differentiated IFP progenitor cells were stimulated by TGF-beta1 and BMP-7 to synthesize and secrete SZP. SZP mRNA was significantly up-regulated by chondrogenic induction for 21 days. These findings indicate that the stimulation of SZP expression by TGF-beta and BMP-7 may lead to functional improvement of damaged intraarticular tissues and that IFP progenitor cells may be a potential useful source for inducing superficial zone of articular cartilage by tissue engineering for regeneration of damaged articular cartilage due to osteoarthritis.


Parathyroid hormone inhibits TGF-β/Smad signaling and extracellular matrix proteins upregulation in rat mesangial cells.

  • Fang-Fang Peng‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Accumulation of glomerular matrix is a hallmark of diabetic nephropathy. TGF-β1 is a major cytokine mediating the production of various extracellular matrix (ECM) proteins. The aim of this study is to elucidate the effect of parathyroid hormone (PTH) on TGF-β1 and high glucose-induced upregulation of ECM proteins in primary mesangial cells from Sprague-Dawley rat. The results showed that PTH pretreatment prevented TGF-β1 and high glucose-induced Smad2/3 phosphorylation and consequent upregulation of fibronectin and type IV collagen within 4 h. The inhibitory effect of PTH is due to PTH1R activation, because knocking down PTH 1 receptor (PTH1R) by RNA interference reversed the inhibitory effect of PTH on TGF-β1 and high glucose-induced Smad2/3 phosphorylation and ECM upregulation. Furthermore, it is found that PTH1R associated with TGF-β type II receptor (TβR II) and both receptors internalized into the cytoplasm when mesangial cells were stimulated with PTH alone. The internalization of TβR II might reduce the amount of membrane TβR II, attenuate the sensitivity of mesangial cells to TGF-β1, and therefore inhibit Smad activation and ECM upregulation induced by TGF-β1 and high glucose. Further studies are needed to know whether the endocytic receptors are to be degraded or recycled, and evaluate the role of PTH in TGF-β1 signaling more comprehensively.


Sirtuin 2 expression suppresses oxidative stress and senescence of nucleus pulposus cells through inhibition of the p53/p21 pathway.

  • Maojie Yang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Intervertebral disc degeneration (IDD) is a kind of disease associated with nucleus pulposus (NP) cell senescence. Previous studies have shown that the sirtuin family plays an extremely important role in the progress of cell aging. However, whether sirtuin2 (Sirt2) protects against IDD remains unknown. The aim of this study was to determine whether Sirt2 protected NP from degradation in IDD. The expression of Sirt2 in different degree of degenerate disc tissues was determined by reverse transcription-polymerase chain reaction. Interleukin 1 beta (IL-1β) was used to stimulate the degeneration of NP cells. Subsequently, lentivirus transfection was performed to increase Sirt2 expression in vitro. Meanwhile, the function of Sirt2 overexpression in the progress of NP cell degeneration was evaluated. Our study showed that the expression of Sirt2 markedly decreased in severe degenerated disc tissues. IL-1β significantly promoted the progress of IDD. Meanwhile, overexpression of Sirt2 could reverse the effects of IL-1β. The data also revealed that Sirt2 overexpression obviously increased the production of antioxidant SOD1/2 and suppressed oxidative stress in the disc. Moreover, p53 and p21 could be significantly suppressed by Sirt2 overexpression. These results suggested that Sirt2 prevented NP degradation via restraining oxidative stress and cell senescence through inhibition of the p53/p21 pathway. Furthermore, Sirt2 might become a novel target for IDD therapy in the future.


Necrostatin-1 ameliorates adjuvant arthritis rat articular chondrocyte injury via inhibiting ASIC1a-mediated necroptosis.

  • Yong Chen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Necroptosis, a necrotic cell death pathway regulated by receptor interacting protein (RIP) 1 and 3, plays a key role in pathophysiological processes, including rheumatoid arthritis (RA). However, whether necroptosis is involved in RA articular cartilage damage processes remain unclear. The aim of present study was to investigate the dynamic changes in arthritic chondrocyte necroptosis and the effect of RIP1 inhibitor necrostatin-1 (Nec-1) and acid-sensing ion channels (ASICs) inhibitor amiloride on arthritic cartilage injury and acid-induced chondrocyte necroptosis. Our results demonstrated that the expression of RIP1, RIP3 and mixed lineage kinase domain-like protein phosphorylation (p-MLKL) were increased in adjuvant arthritis (AA) rat articular cartilage in vivo and acid-induced chondrocytes in vitro. High co-expression of ASIC1a and RIP1 showed in AA rat articular cartilage. Moreover, Nec-1 and amiloride could reduce articular cartilage damage and necroinflammation in AA rats. In addition, acid-induced increase in necroptosis markers RIP1/RIP3 were inhibited by Nec-1, ASIC1a-specific blocker psalmotoxin-1 (PcTx-1) or ASIC1a-short hairpin RNA respectively, which revealed that necroptosis is triggered in acid-induced chondrocytes and mediated by ASIC1a. These findings indicated that blocking ASIC1a-mediated chondrocyte necroptosis may provide potential therapeutic strategies for RA treatment.


Lumican-null mice are susceptible to aging and isoproterenol-induced myocardial fibrosis.

  • Shao-Wei Chen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

With aging and stress, the myocardium undergoes structural remodeling, often leading to fibrosis. The purpose of this study is to examine whether lumican, one of the class II small leucine-rich proteoglycans, has a protective role in cardiac remodeling and fibrosis. In attempts to elucidate the hypothesis that lumican may have a protective role in cardiac remodeling and fibrosis, we compared the cardiac phenotypes of young (3-month-old) and elder (6-month- and 12-month-old) lumican-null (Lum-/-) mice. Extra-cellular matrix remodeling and apoptosis are examined to determine the roles of lumican on age-dependent cardiac fibrosis induced by isoproterenol. Compared to wild type littermates, Lum-/- mice exhibited higher mortality due to significantly impaired systolic function, which was associated with an increase of atrial natriuretic peptide (ANP) secreted by the ventricles in response to excessive stretching of myocytes. Masson's Trichrome and silver stains showed significantly more severe ventricle fibrosis in Lum-/- mice. Interestingly, rate of cell death mediated via apoptosis illustrated by the expression of caspase 3 and TUNEL assay was lower in Lum-/- mice after isoproterenol infusion. In addition, Lum-/- mice exhibited higher levels of TGF-β, collagen I/III, and membrane-type matrix metalloproteinase-1 (MT1-MMP/MMP-14) during cardiac remodeling. This study shows that alternations of lumican might be implicated in the pathogenesis of cardiac fibrosis and suggests lumican as novel targets for cardiac fibrosis therapy. Further studies are required to define the mechanism by which lumican modulates cardiac remodeling.


Electrical stimulation induces direct reprogramming of human dermal fibroblasts into hyaline chondrogenic cells.

  • Gyu Seok Lee‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

The repair of articular cartilage needs a sufficient number of chondrocytes to replace the defect tissue. Direct reprogramming of fibroblasts into chondrocytes can provide a sufficient number of chondrocytes because fibroblasts can be expanded efficiently. Herein, we demonstrate for the first time that electrical stimulation can drive direct reprogramming of human dermal fibroblasts (HDFs) into hyaline chondrogenic cells. Our results shows that electrical stimulation drives condensation of HDFs and then enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels without the addition of exogenous growth factors or gene transduction. Electrical stimulation-directly reprogrammed chondrogenic cells showed the normal karyotype. It was also found that electrical stimulation increased the secretion levels of TGF-beta1, PDGF-AA, and IGFBP-2, 3. These findings may contribute to not only novel approach of direct reprogramming but also cell therapy for cartilage regeneration.


Superoxide dismutase 3 facilitates the chondrogenesis of bone marrow-derived mesenchymal stem cells.

  • Yuanyuan Shi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Articular cartilage defects are considered a major clinical problem because they cannot heal by themselves. To date, bone marrow-derived mesenchymal stem cells (BMSCs)-based therapy has been widely applied for cartilage repair. However, fibrocartilage was often generated after BMSC therapy; therefore, there is an urgent need to stimulate and maintain BMSCs chondrogenic differentiation. The specific role of superoxide dismutase 3 (SOD3) in chondrogenesis is unknown; therefore, the present study aimed to clarify whether SOD3 could facilitate the chondrogenic differentiation of BMSCs. We first evaluated SOD3 protein levels during chondrogenesis of BMSCs using plate cultures. We then tested whether SOD3 could facilitate chondrogenesis of BMSCs using knockdown or overexpression experiments. Increased SOD3 protein levels were observed during BMSCs chondrogenesis. SOD3 knockdown inhibited collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and SRY-box 9 (SOX9) expression. Overexpression of SOD3 increased the levels of chondrogenesis markers (COL2A1, ACAN, and SOX9). Elevated superoxide anions were observed when SOD3 was knocked down. We concluded that SOD3 could facilitate chondrogenesis of BMSCs to improve cartilage regeneration.


TRIM59 attenuates IL-1β-driven cartilage matrix degradation in osteoarthritis via direct suppression of NF-κB and JAK2/STAT3 signaling pathway.

  • Yue Teng‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

The tripartite motif (TRIM) protein family are implicated in a wide array of cellular processes, including cell growth, differentiation, apoptosis and inflammation. This study aimed to investigate the specific function of TRIM59 in chondrocytes and its association with the pathophysiology of osteoarthritis (OA). We observed the downregulated TRIM59 expression in OA cartilage compared to normal tissues. Overexpression of TRIM59 suppressed interleukin 1 beta (IL-1β)-induced extracellular matrix (ECM) metabolic imbalance, proinflammatory cytokine production, apoptosis and decrease in cell viability. Mechanistic analyses further revealed that IL-1β-induced activation of the NF-κB and JAK2/STAT3 pathway is suppressed upon TRIM59 overexpression. TRIM59 expression was consistently decreased in a rat OA model in vivo, and its overexpression led to inhibition of matrix metallopeptidase-13 (MMP-13) production, proinflammatory cytokine levels and increased collagen type II (collagen II) and aggrecan synthesis. Our data collectively suggest that TRIM59 plays a critical in OA development through regulation of NF-κB and JAK2/STAT3 signaling pathway. Pharmacological upregulation of TRIM59 may therefore present an effective novel therapeutic approach for OA.


The cleavage of N-cadherin is essential for chondrocyte differentiation.

  • Shigeto Nakazora‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

The aggregation of chondroprogenitor mesenchymal cells into precartilage condensation represents one of the earliest events in chondrogenesis. N-cadherin is a key cell adhesion molecule implicated in chondrogenic differentiation. Recently, ADAM10-mediated cleavage of N-cadherin has been reported to play an important role in cell adhesion, migration, development and signaling. However, the significance of N-cadherin cleavage in chondrocyte differentiation has not been determined. In the present study, we found that the protein turnover of N-cadherin is accelerated during the early phase of chondrogenic differentiation in ATDC5 cells. Therefore, we generated the subclones of ATDC5 cells overexpressing wild-type N-cadherin, and two types of subclones overexpressing a cleavage-defective N-cadherin mutant, and examined the response of these cells to insulin stimulation. The ATDC5 cells overexpressing cleavage-defective mutants severely prevented the formation of cartilage aggregates, proteoglycan production and the induction of chondrocyte marker gene expression, such as type II collagen, aggrecan and type X collagen. These results suggested that the cleavage of N-cadherin is essential for chondrocyte differentiation.


Fibulin-3 negatively regulates chondrocyte differentiation.

  • Toru Wakabayashi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

Fibulin-3 is a member of the fibulin family that has been newly recognized as extracellular matrix proteins. We assessed the effects of fibulin-3 overexpression on chondrocyte differentiation using the clonal murine cell line ATDC5. The ATDC5-FBLN3 stably expressing fibulin-3 protein was spindle-shaped cell compared to the ATDC5-mock with plump cell. The cell growth in the ATDC5-FBLN3 was accelerated in comparison to that in the ATDC5-mock. The ATDC5-FBLN3 was not stained by Alcian blue, nor was there any cartilage aggregate formed after the induction of chondrogenic differentiation. The expression of type II collagen, aggrecan, and type X collagen was completely suppressed in ATDC5-FBLN3 even after the induction of differentiation. The overexpression of fibulin-3 reduced the expression of Sox5 and Sox6, while it maintained the expression of Sox9. These findings suggest that fibulin-3 may play an important role as a negative regulator of chondrocyte differentiation.


Essential role of krüppel-like factor 5 during tumor necrosis factor α-induced phenotypic conversion of vascular smooth muscle cells.

  • Seon Hee Kim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Tumor necrosis factor α (TNFα) plays an essential role in the regulation of vascular smooth muscle cell (VSMC) phenotype. In the present study, we provide evidence that krüppel-like factor 5 (KLF5) plays an essential role in TNFα-induced phenotypic conversion of VSMCs. Ectopic expression of KLF5 completely blocked phenotypic conversion of VSMCs from synthetic to contractile type. In addition, stimulation of VSMCs with TNFα facilitated expression of KLF5, whereas expression of smooth muscle marker genes such as SM22α and smooth muscle actin (SMA) was significantly down-regulated. TNFα significantly enhanced the promoter activity of KLF5 as well as mRNA level, which is significantly suppressed by the inhibition of the MAPK pathway. Silencing of KLF5 suppressed TNFα-induced phenotypic conversion of VSMCs, whereas overexpression of KLF5 stimulated phenotypic conversion of VSMCs and facilitated the loss of angiotensin II (AngII)-dependent contraction. Finally, overexpression of KLF5 significantly attenuated the promoter activity of SM22α and SMA. Therefore, we suggest that TNFα-dependent induction of KLF5 may play an essential role in phenotypic modulation of VSMCs.


MicroRNA-23a-3p promotes the development of osteoarthritis by directly targeting SMAD3 in chondrocytes.

  • Liang Kang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Osteoarthritis (OA) is a common chronic degenerative joint disease. Progressive destruction of the integrity of articular cartilage is an important pathological feature, but treatment options that reverse this damage have not been developed. According to recent studies, microRNAs have important regulatory roles in the initiation and progression of OA. In the current study, the biological effects of miR-23a-3p and its expression in OA tissues were examined. We found that miR-23a-3p expression was obviously higher and SMAD3 expression was significantly lower in OA cartilage than in normal tissues. The hypomethylation status of CpG islands in the promoter region of miR-23a-3p was confirmed by methylation-specific polymerase chain reaction in OA cartilage tissues. Furthermore, a bioinformatics analysis and luciferase reporter assay identified SMAD3 as a target gene of miR-23a-3p and SMAD3 expression at both the protein and mRNA levels was inhibited by miR-23a-3p. A functional analysis demonstrated that miR-23a-3p overexpression suppresses type II collagen and aggrecan expression, while miR-23a-3p inhibition had the opposite effects. Small interfering RNA-mediated knockdown of SMAD3 reversed the effects of the miR-23a-3p inhibitor on the expression of type II collagen and aggrecan. Our results suggested that miR-23a-3p contributes to OA progression by directly targeting SMAD3, providing a potential therapeutic target for OA treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: