Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,485 papers

Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity.

  • Shanewaz Hossan‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Chromium (Cr) (VI) has long been known as an environmental hazard that can be reduced from aqueous solutions through bioremediation by living cells. In this study, we investigated the efficiency of reduction and biosorption of Cr(VI) by chromate resistant bacteria isolated from tannery effluent. From 28 screened Cr(VI) resistant isolates, selected bacterial strain SH-1 was identified as Klebsiella sp. via 16S rRNA sequencing. In Luria-Bertani broth, the relative reduction level of Cr(VI) was 95%, but in tannery effluent, it was 63.08% after 72 h of incubation. The cell-free extract of SH-1 showed a 72.2% reduction of Cr(VI), which indicated a higher activity of Cr(VI) reducing enzyme than the control. Live and dead biomass of SH-1 adsorbed 51.25 mg and 29.03 mg Cr(VI) per gram of dry weight, respectively. Two adsorption isotherm models-Langmuir and Freundlich-were used for the illustration of Cr(VI) biosorption using SH-1 live biomass. Scanning electron microscopy (SEM) analysis showed an increased cell size of the treated biomass when compared to the controlled biomass, which supports the adsorption of reduced Cr on the biomass cell surface. Fourier-transform infrared analysis indicated that Cr(VI) had an effect on bacterial biomass, including quantitative and structural modifications. Moreover, the chickpea seed germination study showed beneficial environmental effects that suggest possible application of the isolate for the bioremediation of toxic Cr(VI).


Chromium Recovery from Chromium-Loaded Cupressus lusitanica Bark in Two-Stage Desorption Processes.

  • Alma Rosa Netzahuatl-Muñoz‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Hexavalent chromium (Cr(VI)) contamination poses serious health and environmental risks. Chromium biosorption has been employed as an effective means of eradicating Cr(VI) contamination. However, research on chromium desorption from chromium-loaded biosorbents is scarce despite its importance in facilitating industrial-scale chromium biosorption. In this study, single- and two-stage chromium desorption from chromium-loaded Cupressus lusitanica bark (CLB) was conducted. Thirty eluent solutions were evaluated first; the highest single-stage chromium desorption efficiencies were achieved when eluent solutions of 0.5 M NaOH, 0.5 M H2SO4, and 0.5 M H2C2O4 were used. Subsequently, two-stage kinetic studies of chromium desorption were performed. The results revealed that using 0.5 M NaOH solution in the first stage and 0.5 M H2C2O4 in the second stage enabled the recovery of almost all the chromium initially bound to CLB (desorption efficiency = 95.9-96.1%) within long (168 h) and short (3 h) desorption periods at each stage. This study clearly demonstrated that the oxidation state of the recovered chromium depends on the chemical nature and concentration of the eluent solution. The results suggest the possible regeneration of chromium-loaded CLB for its subsequent use in other biosorption/desorption cycles.


Isolation and Identification of Chromium Reducing Bacillus Cereus Species from Chromium-Contaminated Soil for the Biological Detoxification of Chromium.

  • Ming-Hao Li‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Chromium contamination has been an increasing threat to the environment and to human health. Cr(VI) and Cr(III) are the most common states of chromium. However, compared with Cr(III), Cr(VI) is more toxic and more easily absorbed, therefore, it is more harmful to human beings. Thus, the conversion of toxic Cr(VI) into Cr(III) is an accepted strategy for chromium detoxification. Here, we isolated two Bacillus cereus strains with a high chromium tolerance and reduction ability, named B. cereus D and 332, respectively. Both strains demonstrated a strong pH and temperature adaptability and survival under 8 mM Cr(VI). B. cereus D achieved 87.8% Cr(VI) removal in 24 h with an initial 2 mM Cr(VI). Cu(II) was found to increase the removal rate of Cr(VI) significantly. With the addition of 0.4 mM Cu(II), 99.9% of Cr(VI) in the culture was removed by B. cereus 332 in 24 h. This is the highest removal efficiency in the literature that we have seen to date. The immobilization experiments found that sodium alginate with diatomite was the better method for immobilization and B. cereus 332 was more efficient in immobilized cells. Our research provided valuable information and new, highly effective strains for the bioremediation of chromium pollution.


Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity.

  • B Dheeba‎ et al.
  • Journal of toxicology‎
  • 2015‎

Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM) or nitrogen, phosphorous, and potassium (NPK) enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations.


Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil.

  • B Kavita‎ et al.
  • 3 Biotech‎
  • 2012‎

Hexavalent chromium-resistant Ochrobactrum intermedium BCR400 was isolated from chromium contaminated soil collected from Vadodara, Gujarat. It reduced 100 mg Cr(VI)/L completely in 52 h with initial Cr(VI) reduction rate of 1.98 mg/L/h. The Cr(VI) reduction rate decreased with increase in Cr(VI) concentration from 100 to 500 mg/L. The addition of anthraquinone-2-sulphonic acid (AQS) to culture O. intermedium BCR400 significantly enhanced its chromium reduction rate. The activation energy of AQS-mediated Cr(VI) reduction (120.69 KJ/mol) was 1.1-fold lower than non-mediated Cr(VI) reduction. An increase in the activities of quinone reductase and chromate reductase in cells grown in presence of AQS/AQS + Cr(VI) suggests their role in reduction of Cr(VI) by O. intermedium. Both chromate reductase and quinone reductase activities were FAD independent, required NADH as reductant, displayed maximum activity at pH (7.0) and temperature (30 °C). Thus Cr(VI) bioremediation potential of O. intermedium can be enhanced by augmentation of system with AQS as redox mediator.


Micro-remediation of chromium contaminated soils.

  • Hadia-E- Fatima‎ et al.
  • PeerJ‎
  • 2018‎

Bacteria are tiny organisms which are ubiquitously found in the environment. These microscopic living bodies are responsible for the flow of nutrients in biogeochemical cycles and fertility imparted to the soil. Release of excessive chromium in agricultural soils due to rapid growth of industries may result in minimizing the fertility of soil in future, which will lead to reduction in crop production. Plant growth promoting bacteria (PGPB) are beneficial to the environment, some of which can tolerate chromium and protect plants against heavy metal stress. The current study aims to identify such chromium-tolerant auxin-producing rhizobacteria and to investigate their inoculation effects on the growth characteristics of Lens culinaris in chromium polluted soils by using two different chromium salts i.e., K2Cr2O7 and K2CrO4 in varying concentrations (0, 50, 100, 200, 400 and 500 µgml-1). The results revealed that Bacillus species are efficient in significantly reducing the deleterious effects of Cr. These effective bacterial strains were able to stimulate the growth of metal effected plants of Lens culinaris which were grown in chromium contaminated environment. Therefore, these plant growth promoting rhizobacteria PGPRs, having both auxin production potential and chromium-resistance ability, are considered as efficient micro-factories against chromium pollution.


Chromium(III) release from chromium-tanned leather elicits allergic contact dermatitis: a use test study.

  • Yolanda S Hedberg‎ et al.
  • Contact dermatitis‎
  • 2018‎

Chromium (Cr) is a common skin sensitizer. The use of Cr(VI) in leather is restricted in the EU, but that of Cr(III) is not.


Chromium enhances insulin responsiveness via AMPK.

  • Nolan J Hoffman‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2014‎

Trivalent chromium (Cr(3+)) is known to improve glucose homeostasis. Cr(3+) has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5' AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr(3+) improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr(3+) protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr(3+) on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr(3+) in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr(3+), via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation.


Dual action of chromium-reducing and nitrogen-fixing Bacillus megaterium-ASNF3 for improved agro-rehabilitation of chromium-stressed soils.

  • Sumaira Aslam‎ et al.
  • 3 Biotech‎
  • 2016‎

We conducted a study for enhanced biological rehabilitation of chromium-contaminated soils using a chromium-reducing and nitrogen-fixing bacterial species (Bacillus megaterium-ASNF3). The bacterial species was isolated from a chromium-rich land area, characterized, and employed under optimum conditions for the treatment of artificially prepared chromium-rich soil. The bacterium reduced Cr(VI) up to 86 % in a 60-day trial of incubation in the soil bioreactor. The nitrogenase activity of the bacterium yielded up to 486 nmol of ethylene/mL/h after an incubation period of 40 days when it was optimally cultured in growth medium at neutral pH and 30 °C. Although the nitrogen-fixing ability of the bacterium reduced significantly in the presence of 1000 ppm of Cr(VI), yet, the bacterium was proved to be a potential bio-fertilizer for enhancing nitrogen contents of the contaminated soil even under the higher chromium stress, together with the metal reduction. In the biologically treated soil, higher values of wheat growth variables were achieved. Application of metal-resistant B. megaterium-ASNF3 in selected situations rendered chromium-laden soils arable with significant increment in crop-yield parameters.


Reducing Hexavalent Chromium to Trivalent Chromium with Zero Chemical Footprint: Borohydride Exchange Resin and a Polymer-Supported Base.

  • John Regan‎ et al.
  • ACS omega‎
  • 2019‎

Aqueous hexavalent chromium, Cr(VI), is rapidly reduced to trivalent chromium, Cr(III), by exposure to (polystyrylmethyl)trimethylammonium borohydride and with Amberlite-supported mild bases in a heterogeneous environment. Post-reaction removal of the insoluble reagents leaves no remediation-based chemical footprint in the source water. Time dependence with stirred and static conditions is discussed.


Improvement in the Chromium(VI)-Diphenylcarbazide Determination Using Cloud Point Microextraction; Speciation of Chromium at Low Levels in Water Samples.

  • Begoña A Mouco-Novegil‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

A reliable, rapid, and low-cost procedure for determining very low concentrations of hexavalent chromium (Cr) in water is discussed. The procedure is based in the classical reaction of Cr6+ with diphenylcarbazide. Once this reaction has taken place, sodium dodecylsulfate is added to obtain an ion-pair, and Triton X-114 is incorporated. Next, the heating of the mixture allows two phases that can be separated by centrifugation to be obtained in a cloud point microextraction (CPE) process. The coacervate contains all the Cr6+ originally present in the water sample, so that the measurement by molecular absorption spectrophotometry allows the concentration of the metal to be calculated. No harmful organic solvents are required. The discrimination of hexavalent and trivalent forms is achieved by including an oxidation stage with Ce4+. To take full advantage of the pre-concentration effect inherent to the coacervation process, as well as to minimize reagent consumption and waste generation, a portable mini-spectrophotometer which is compatible with microvolumes of liquid samples is used. The preconcentration factor is 415 and a chromium concentration as low as 0.02 µg L-1 can be detected. The procedure shows a good reproducibility (relative standard deviation close to 3%).


Simvastatin attenuates chromium-induced nephrotoxicity in rats.

  • Zahra Goodarzi‎ et al.
  • Journal of nephropathology‎
  • 2017‎

Hexavalent Chromium (Cr (VI)) compounds are extremely toxic and have been demonstrated to induce nephrotoxicity associated with oxidative stress in humans and animals. The wide environmental distribution of these agents lead to an increase interest of preventive effects of its adverse effects.


Chromium Flavonoid Complexation in an Antioxidant Capacity Role.

  • Sevasti Matsia‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The plethora of flavonoid antioxidants in plant organisms, widespread in nature, and the appropriate metal ions known for their influence on biological processes constitute the crux of investigations toward the development of preventive metallodrugs and therapeutics in several human pathophysiologies. To that end, driven by the need to enhance the structural and (bio)chemical attributes of the flavonoid chrysin, as a metal ion complexation agent, thereby rendering it bioavailable toward oxidative stress, synthetic efforts in our lab targeted ternary Cr(III)-chrysin species in the presence of auxiliary aromatic N,N'-chelators. The crystalline metal-organic Cr(III)-chrysin-L (L = bipyridine (1) and phenanthroline (2)) compounds that arose were physicochemically characterized by elemental analysis, FT-IR, UV-Visible, ESI-MS, luminescence, and X-ray crystallography. The properties of these compounds in a solid state and in solution formulate a well-defined profile for the two species, thereby justifying their further use in biological experiments, intimately related to cellular processes on oxidative stress. Experiments in C2C12 myoblasts at the cellular level (a) focus on the antioxidant capacity of the Cr(III)-complexed flavonoids, emphasizing their distinct antiradical activity under oxidative stress conditions, and (b) exemplify the importance of structural speciation in Cr(III)-flavonoid interactions, thereby formulating correlations with the antioxidant activity of a bioavailable flavonoid toward cellular pathophysiologies, collectively supporting flavonoid introduction in new metallo-therapeutics.


Toxicokinetics of Chromium in Enchytraeus crypticus (Oligochaeta).

  • Fátima C F Santos‎ et al.
  • Toxics‎
  • 2022‎

Chromium is naturally occurring, but emission from anthropogenic sources can lead to increased soil concentrations. Information on its toxicokinetics is essential in order to understand the time needed to reach toxicity and the mechanisms of uptake/elimination. In this study the toxicokinetics of Cr(III) was evaluated using the soil standard species Enchytraeus crypticus. The animals were exposed to 180 mg Cr/kg dry soil, a sublethal concentration, in LUFA 2.2 natural soil. OECD guideline 317 was followed, with a 14-day uptake phase in spiked soil followed by a 14-day elimination in clean soil. Exposure to Cr led to fast uptake and elimination, with Ku = 0.012 kgsoil/kgorganism/day and Ke = 0.57 day-1. The bioaccumulation factor was 0.022, and DT50 for elimination was 1.2 days. The concentration of Cr reached an internal equilibrium in the animals after 10 days. Transfer to clean soil allowed body Cr concentrations to return to background levels after approximately 7 days. E. crypticus seemed able to efficiently regulate internal Cr concentrations by actively eliminating Cr (an essential element). Although Ku and Ke deviated from the values reported in other studies for other soil invertebrates, the bioaccumulation factors were similar. These findings show the importance of toxicokinetic studies in evaluating toxicity based on internal metal concentrations that can more accurately represent the bioavailable concentration.


Very Late Pathological Responses to Cobalt-Chromium Everolimus-Eluting, Stainless Steel Sirolimus-Eluting, and Cobalt-Chromium Bare Metal Stents in Humans.

  • Hiroyoshi Mori‎ et al.
  • Journal of the American Heart Association‎
  • 2017‎

The "very late" clinical outcomes for durable polymer drug-eluting stents and bare metal stents (BMSs) have been shown to be dissimilar in clinical studies. Conceptually, the long-term vascular compatibility of BMSs is still regarded to be superior to drug-eluting stents; however, no pathologic study to date has specifically addressed this issue. We evaluated the very late (≥1 year) pathologic responses to durable polymer drug-eluting stents (cobalt-chromium [CoCr] everolimus-eluting stents [EESs] and stainless steel sirolimus-eluting stents [SS-SESs]) versus BMSs (CoCr-BMSs).


Cobalt-chromium alloys in fixed prosthodontics in Sweden.

  • Maria Kassapidou‎ et al.
  • Acta biomaterialia odontologica Scandinavica‎
  • 2017‎

Aim: The aim of this study was to compile the usage of Co-Cr alloys in fixed prosthodontics (FP) among dental laboratories in Sweden. Methods: From March to October 2015, questionnaires were sent to 542 registered dental laboratories in Sweden. The questionnaires were divided in two parts, one for fixed dental-supported prosthodontics (FDP) and one for fixed implant-supported prosthodontics (FIP). Reminders were sent three times. Results: In total of 542 dental laboratories, 55% answered the questionnaires. Most dental laboratories use Co-Cr in FP, 134 (74%) in FDP and 89(66%) in FIP. The laboratories used Co-Cr alloys of various compositions in the prostheses, 35 for FDP and 30 for FIP. The most commonly used Co-Cr alloys for tooth-supported FDPs were (a) Wirobond® 280, (b) Cara SLM and (c) Wirobond® C. For implant-supported frameworks the frequently used alloys were: (a) Cara SLM, (b) Cara Milled and (c) Wirobond® 280. Except for the difference in composition of these alloys, they were also manufactured with various techniques. In tooth-supported prostheses the dominating technique was the cast technique while newer techniques as laser-sintering and milling were more commonly reported for implant-supported constructions. A fourth technique; the 'pre-state' milling was reported in FDP. Conclusion: More than 30 different Co-Cr alloys were reported as being used in FP. Thus, there is a need for studies exploring the mechanical and physical behavior and the biological response to the most commonly used Co-Cr alloys.


Molecular analysis of chromium and cobalt-related toxicity.

  • Brian Scharf‎ et al.
  • Scientific reports‎
  • 2014‎

Occupational and environmental exposure to Co and Cr has been previously linked to a wide array of inflammatory and degenerative conditions and cancer. Recently, significant health concerns have been raised by the high levels of Cr and Co ions and corrosion products released by biomedical implants. Herein, we set to analyze the biological responses associated with Co and Cr toxicity. Histological, ultrastructural, and elemental analysis, performed on Cr and Co exposed patients reveal the presence of corrosion products, metallic wear debris and metal ions at varying concentrations. Metallic ions and corrosion products were also generated in vitro following macrophage phagocytosis of metal alloys. Ex vivo redox proteomic mapped several oxidatively damaged proteins by Cr(III) and Co(II)-induced Fenton reaction. Importantly, a positive correlation between the tissue amounts of Cr(III) and Co(II) ions and tissue oxidative damage was observed. Immobilized- Cr(III) and Co(II) affinity chromatography indicated that metal ions can also directly bind to several metallo and non-metalloproteins and, as demonstrated for aldolase and catalase, induce loss of their biological function. Altogether, our analysis reveals several biological mechanisms leading to tissue damage, necrosis, and inflammation in patients with Cr and Co-associated adverse local tissue reactions.


The Effect of Chromium Nanoparticles and Chromium Picolinate in the Diet of Chickens on Levels of Selected Hormones and Tissue Antioxidant Status.

  • Anna Stępniowska‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2019‎

: We have postulated that supplementation with Cr can increase serotonin levels and improve the antioxidant status of chickens, with no adverse effect on the secretion of other hormones. The study aimed to determine what form and dose of Cr more favorably affect the level of selected hormones (insulin, glucagon, serotonin, dopamine, noradrenaline, histamine, T3 and T4) and the antioxidant status (level of malondialdehyde and lipid peroxides, activity of superoxide dismutase and catalase) of chicken tissues. The experiment was carried out on chickens randomly divided into five treatment groups. The basal diets (control group) were supplemented with two levels of Cr (3 and 6 mg/kg) and two Cr sources: Cr-picolinate (Cr-Pic) and Cr-nano (Cr-NP) to obtain four experimental diets: 3 mg/kg Cr-Pic, 6.0 mg/kg Cr-Pic, 3.0 mg/kg Cr-NP. and 6.0 mg/kg Cr-NP. The addition of Cr in both forms increased the level of serotonin at a dose of 3 mg/kg and, at the same time, reduced the level of noradrenaline. The addition of Cr at 3 mg/kg, irrespective of the form used, regulated the level of hormones of carbohydrate metabolism (increasing insulin levels and reducing glucagon levels) and had an adverse effect on the antioxidant status of the liver and breast muscle. Due to the adverse effect of Cr at 3 mg/kg on the antioxidant status of chickens, this level of Cr should not be considered in both forms Cr-Pic and Cr-NP as a feed additive for broiler chickens. In the future, studies on the potential beneficial effects of Cr on the organism should take into account doses lower than 3 mg/kg.


Methylaluminoxane-Free Chromium Catalytic System for Ethylene Tetramerization.

  • Eun Ho Kim‎ et al.
  • ACS omega‎
  • 2017‎

Ethylene tetramerization catalyst systems comprising a Cr(III) complex containing PNP ligands and methylaluminoxane (MAO) are useful for the production of 1-octene. However, a concern with these systems is the use of expensive MAO in excess. Herein, we report a catalytic system that avoids the use of MAO. Metathesis of CrCl3(THF)3 and [(CH3CN)4Ag]+[B(C6F5)4]- afforded [L4CrIIICl2]+[B(C6F5)4]- (L = CH3CN or tetrahydrofuran (THF)), which was converted to [(PNP)CrCl2L2]+[B(C6F5)4]-, where PNP is iPrN(PPh2)2 (1) or [CH3(CH2)16]2CHN(PPh2)2 (2). The molecular structures of [(THF)4CrIIICl2]+[B(C6F5)4]- and [1-CrCl2(THF)2]+[B(C6F5)4]- were unambiguously determined by X-ray crystallography. The cationic (PNP)CrIII complexes paired with [B(C6F5)4]- anions, that is, [(PNP)CrCl2(CH3CN)2]+[B(C6F5)4]-, exhibited high activity in chlorobenzene when activated with common trialkylaluminum species (Me3Al, Et3Al, and iBu3Al). The activities and selectivity were comparable to those of the original MAO-based Sasol system (1-CrCl3/MAO). When activated with Et3Al or iBu3Al, the Cr complex, [2-CrCl2(CH3CN)2]+[B(C6F5)4]-, which bears long alkyl chains, showed high activity in the more desirable methylcyclohexane solvent (89 kg/g-Cr/h) and much higher activity in cyclohexene (168 kg/g-Cr/h). Other advantages of the [2-CrCl2(CH3CN)2]+[B(C6F5)4]-/Et3Al system in cyclohexene were negligible catalyst deactivation, formation of only a negligible amount of polyethylene side product (0.3%), and formation of fewer unwanted side products above C10. The [B(C6F5)4]- anion is compatible with trialkylaluminum species once it is not paired with a trityl cation. Hence, [(PNP)CrCl2(CH3CN)2]+[B(C6F5)4]-/Et3Al exhibited a significantly higher activity than that of a previously reported system composed of [Ph3C]+[B(C6F5)4]-, that is, 1/CrCl3(THF)3/[Ph3C]+[B(C6F5)4]-/Et3Al.


Chromium - a scoping review for Nordic Nutrition Recommendations 2023.

  • Christine Henriksen‎ et al.
  • Food & nutrition research‎
  • 2023‎

Trivalent chromium (CrIII) is the principal form of chromium found in diet and supplements. CrIII has been claimed to be involved in the regulation of carbohydrate, lipid, and protein metabolism. Hexavalent chromium (CrVI) is a carcinogen when inhaled, which is uncommon, and occurs mainly by occupational exposures. There is a concern about adverse health effects also from exposure to CrVI by contaminated drinking water, although data from human studies are limited. Chromium had no recommendation in the Nordic Nutrition Recommendations (NNR) 2012 and the European Food Safety Authority (EFSA) did not set any reference values either. Methods for evaluating chromium status are lacking, and there is still uncertainty about how chromium deficiency in humans manifests itself. The essentiality of chromium is also disputed. This scoping review revealed new research activity relating to high-dose chromium supplements and several health outcomes (overweight, obesity, and diabetes). Although these issues are related to health concerns in the Nordic or Baltic countries, the relevance for the NNR is modest, since such a high intake of chromium cannot be achieved by diet. Thus, no strong evidence was identified in the scientific literature that justifies a recommendation for chromium intake.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: