Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Obeticholic acid improves fetal bile acid profile in a mouse model of gestational hypercholanemia.

  • Vanessa Pataia‎ et al.
  • American journal of physiology. Gastrointestinal and liver physiology‎
  • 2020‎

Intrahepatic cholestasis of pregnancy (ICP) is characterized by elevated maternal circulating bile acid levels and associated dyslipidemia. ICP leads to accumulation of bile acids in the fetal compartment, and the elevated bile acid concentrations are associated with an increased risk of adverse fetal outcomes. The farnesoid X receptor agonist obeticholic acid (OCA) is efficient in the treatment of cholestatic conditions such as primary biliary cholangitis. We hypothesized that OCA administration during hypercholanemic pregnancy will improve maternal and fetal bile acid and lipid profiles. Female C57BL/6J mice were fed either a normal chow diet, a 0.5% cholic acid (CA)-supplemented diet, a 0.03% OCA-supplemented diet, or a 0.5% CA + 0.03% OCA-supplemented diet for 1 wk before mating and throughout pregnancy until euthanization on day 18. The effects of CA and OCA feeding on maternal and fetal morphometry, bile acid and lipid levels, and cecal microbiota were investigated. OCA administration during gestation did not alter the maternal or fetal body weight or organ morphometry. OCA treatment during hypercholanemic pregnancy reduced bile acid levels in the fetal compartment. However, fetal dyslipidemia was not reversed, and OCA did not impact maternal bile acid levels or dyslipidemia. In conclusion, OCA administration during gestation had no apparent detrimental impact on maternal or fetal morphometry and improved fetal hypercholanemia. Because high serum bile acid concentrations in ICP are associated with increased rates of adverse fetal outcomes, further investigations into the potential use of OCA during cholestatic gestation are warranted.NEW & NOTEWORTHY We used a mouse model of gestational hypercholanemia to investigate the use of obeticholic acid (OCA), a potent FXR agonist, as a treatment for the hypercholanemia of intrahepatic cholestasis of pregnancy (ICP). The results demonstrate that OCA can improve the fetal bile acid profile. This is relevant not only to women with ICP but also for women who become pregnant while receiving OCA treatment for other conditions such as primary biliary cholangitis and nonalcoholic steatohepatitis.


Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype.

  • Shadi Abu-Hayyeh‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2013‎

Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent pregnancy-specific liver disease and is associated with an increased risk of adverse fetal outcomes, including preterm labor and intrauterine death. The endocrine signals that cause cholestasis are not known but 3α-sulfated progesterone metabolites have been shown to be elevated in ICP, leading us to study the impact of sulfated progesterone metabolites on farnesoid X receptor (FXR)-mediated bile acid homeostasis pathways. Here we report that the 3β-sulfated progesterone metabolite epiallopregnanolone sulfate is supraphysiologically raised in the serum of ICP patients. Mice challenged with cholic acid developed hypercholanemia and a hepatic gene expression profile indicative of FXR activation. However, coadministration of epiallopregnanolone sulfate with cholic acid exacerbated the hypercholanemia and resulted in aberrant gene expression profiles for hepatic bile acid-responsive genes consistent with cholestasis. We demonstrate that levels of epiallopregnanolone sulfate found in ICP can function as a partial agonist for FXR, resulting in the aberrant expression of bile acid homeostasis genes in hepatoma cell lines and primary human hepatocytes. Furthermore, epiallopregnanolone sulfate inhibition of FXR results in reduced FXR-mediated bile acid efflux and secreted FGF19. Using cofactor recruitment assays, we show that epiallopregnanolone sulfate competitively inhibits bile acid-mediated recruitment of cofactor motifs to the FXR-ligand binding domain.


Maternal glucose homeostasis is impaired in mouse models of gestational cholestasis.

  • Elena Bellafante‎ et al.
  • Scientific reports‎
  • 2020‎

Women with intrahepatic cholestasis of pregnancy (ICP), a disorder characterised by raised serum bile acids, are at increased risk of developing gestational diabetes mellitus and have impaired glucose tolerance whilst cholestatic. FXR and TGR5 are modulators of glucose metabolism, and FXR activity is reduced in normal pregnancy, and further in ICP. We aimed to investigate the role of raised serum bile acids, FXR and TGR5 in gestational glucose metabolism using mouse models. Cholic acid feeding resulted in reduced pancreatic β-cell proliferation and increased apoptosis in pregnancy, without altering insulin sensitivity, suggesting that raised bile acids affect β-cell mass but are insufficient to impair glucose tolerance. Conversely, pregnant Fxr-/- and Tgr5-/- mice are glucose intolerant and have reduced insulin secretion in response to glucose challenge, and Fxr-/- mice are also insulin resistant. Furthermore, fecal bile acids are reduced in pregnant Fxr-/- mice. Lithocholic acid and deoxycholic acid, the principal ligands for TGR5, are decreased in particular. Therefore, we propose that raised serum bile acids and reduced FXR and TGR5 activity contribute to the altered glucose metabolism observed in ICP.


Transient receptor potential canonical 5 channels plays an essential role in hepatic dyslipidemia associated with cholestasis.

  • Khadija M Alawi‎ et al.
  • Scientific reports‎
  • 2017‎

Transient receptor potential canonical 5 (TRPC5), a calcium-permeable, non-selective cation channel is expressed in the periphery, but there is limited knowledge of its regulatory roles in vivo. Endogenous modulators of TRPC5 include a range of phospholipids that have an established role in liver disease, including lysophosphatidylcholine (LPC). Cholestasis is characterized by impairment of excretion of bile acids, leading to elevation of hepatic bile acids. We investigated the contribution of TRPC5 in a murine model of cholestasis. Wild-type (WT) and TRPC5 knock-out (KO) mice were fed a diet supplemented with 0.5% cholic acid (CA) for 21 days. CA-diet supplementation resulted in enlargement of the liver in WT mice, which was ameliorated in TRPC5 KO mice. Hepatic bile acid and lipid content was elevated in WT mice, with a reduction observed in TRPC5 KO mice. Consistently, liver enzymes were significantly increased in cholestatic WT mice and significantly blunted in TRPC5 KO mice. Localized dyslipidaemia, secondary to cholestasis, was investigated utilizing a selected lipid analysis. This revealed significant perturbations in the lipid profile following CA-diet feeding, with increased cholesterol, triglycerides and phospholipids, in WT, but not TRPC5 KO mice. Our results suggest that activation of TRPC5 contributes to the development of cholestasis and associated dyslipidemia. Modulation of TRPC5 activity may present as a novel therapeutic target for liver disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: