Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 393 papers

Facially Amphiphilic Cholic Acid-Lysine Conjugates as Promising Antimicrobials.

  • Poonam Singla‎ et al.
  • ACS omega‎
  • 2020‎

The emergence of multidrug-resistant microbes is a significant health concern posing a constant need for new antimicrobials. Membrane-targeting antibiotics are promising candidates with reduced ability of microbes to develop resistance. In the present investigation, the principal reason behind choosing cholic acid as the crucial scaffold lies in the fact that it has a facially amphiphilic nature, which provides ample opportunity to refine the amphiphilicity by linking the amino acid lysine. A total of 16 novel amphipathic cholic acid derivatives were synthesized by sequentially linking lysine to C3-β-amino cholic acid methyl ester to maintain the hydrophobic/hydrophilic balance, which could be the essential requirement for the antimicrobial activity. Among the synthesized conjugates, a series with fluorenyl-9-methoxycarbonyl moiety attached to cholic acid via lysine linker showed promising antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. A pronounced effect of increase in lysine residues was noted on the observed activity. The lead compounds were found to be active against drug-resistant bacterial and fungal clinical isolates and also improved the efficacy of antifungal agents amphotericin B and voriconazole. Membrane-permeability studies demonstrated the ability of these compounds to induce membrane damage in the tested microbes. The active conjugates did not show any hemolytic activity and were also found to be nontoxic to the normal cells as well as the examined cancer cell lines. The observed antimicrobial activity was attributed to the facial amphiphilic conformations, hydrophobic/hydrophilic balance, and the overall charge on the molecules.


New cholic acid derivatives: Biocatalytic synthesis and molecular docking study.

  • M Antonela Zígolo‎ et al.
  • Steroids‎
  • 2016‎

A series of cholic acid derivatives was synthesized by enzyme catalysis. Eleven acetyl and ester derivatives of cholic acid, eight of them new compounds, were obtained through regioselective lipase-catalyzed reactions in very good to excellent yield. The influence of various reaction parameters in the enzymatic esterification, acetylation and alcoholysis reactions, such as enzyme source, alcohol or acylating agent: substrate ratio, enzyme: substrate ratio, solvent and temperature, was studied. Moreover, in order to shed light to cholic acid behavior in the enzymatic reactions, molecular docking of the lipase with cholic acid and some derivatives was carried out.


Cholic Acid-Based Antimicrobial Peptide Mimics as Antibacterial Agents.

  • Jie Wu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

There is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics. The synthesis of cholic acid analogues involves the attachment of a hydrophobic moiety at the carboxyl terminal of the cholic acid scaffold, followed by the installation of one to three amino acid residues on the hydroxyl groups present on the cholic acid scaffold. Structure-activity relationship studies suggest that the tryptophan moiety is important for high antibacterial activity. Moreover, a minimum of +2 charge is also important for antimicrobial activity. In particular, analogues containing lysine-like residues showed the highest antibacterial potency against Gram-positive S. aureus. All di-substituted analogues possess high antimicrobial activity against both Gram-positive S. aureus as well as Gram-negative E. coli and P. aeruginosa. Analogues 17c and 17d with a combination of these features were found to be the most potent in this study. These compounds were able to depolarise the bacterial membrane, suggesting that they are potential antimicrobial pore forming agents.


Ice-like encapsulated water by two cholic acid moieties.

  • Victor H Soto‎ et al.
  • Steroids‎
  • 2012‎

Starting from the structure of ice (in which each water molecule is surrounded by other four water molecules forming a tetrahedron with a value of 4.51Å for the edge O-O distance), and the knowledge that this value also corresponds to the O7-O12 distance of the skeleton of cholic acid, it is hypothesized that two steroid cholic acid moieties, with an appropriate steroid-steroid distance and a belly-to-belly orientation, could encapsulate a single water molecule between them. To check this hypothesis two succinyl derivatives of cholic acid (a monomer and the related head-head dimer in which the succinyl group is the linking bridge) were designed. The expected "ice-like" structure is found in the crystal of the dimer. There is a hydrogen bond synergy between those participating in the "ice-like" structure, and those in which the bridge is involved with the O7-H hydroxy group and the side chain of the steroid.


Cholic acid-modified polyethylenimine: in vitro and in vivo studies.

  • Brahmanand Dube‎ et al.
  • International journal of nanomedicine‎
  • 2018‎

Low-molecular-weight polyethylenimine has lower cytotoxicity than high molecular weight polyethylenimine, but it is not an efficient transfection agent because of limitations of DNA delivery into the cytoplasm. Therefore, in the present study, the hydrophobic modification of low-molecular-weight polyethylenimine (PEI 2 kDa [PEI2]) by cholic acid (ChA) was performed to form PEI2-ChA, and in vitro and in vivo studies were performed. Results indicate that the nanoplexes of PEI2-ChA with gWIZ-GFP have greater transfection efficiency (27%) in NT8e cell lines as evaluated by flow cytometry and also observed by fluorescence imaging. The present study concluded that the transferrin-containing nanoplexes of PEI2-ChA conjugates with plasmid p53 warrant clinical trials in humans after exhaustive animal studies for use as a novel gene delivery system.


p53-mediated regulation of bile acid disposition attenuates cholic acid-induced cholestasis in mice.

  • Pan Chen‎ et al.
  • British journal of pharmacology‎
  • 2017‎

The tumour suppressor p53 is traditionally recognized as a surveillance molecule to preserve genome integrity. Recent studies have demonstrated that it contributes to metabolic diseases. Here, we investigated the role of p53 in the regulation of bile acid disposition and cholestasis.


Validation of Recombinant Chicken Liver Bile Acid Binding Protein as a Tool for Cholic Acid Hosting.

  • Giusy Tassone‎ et al.
  • Biomolecules‎
  • 2021‎

Bile acids (BAs) are hydroxylated steroids derived from cholesterol that act at the intestinal level to facilitate the absorption of several nutrients and also play a role as signaling molecules. In the liver of various vertebrates, the trafficking of BAs is mediated by bile acid-binding proteins (L-BABPs). The ability to host hydrophobic or amphipathic molecules makes BABPs suitable for the distribution of a variety of physiological and exogenous substances. Thus, BABPs have been proposed as drug carriers, and more recently, they have also been employed to develop innovative nanotechnology and biotechnology systems. Here, we report an efficient protocol for the production, purification, and crystallization of chicken liver BABP (cL-BABP). By means of target expression as His6-tag cL-BABP, we obtained a large amount of pure and homogeneous proteins through a simple purification procedure relying on affinity chromatography. The recombinant cL-BABP showed a raised propensity to crystallize, allowing us to obtain its structure at high resolution and, in turn, assess the structural conservation of the recombinant cL-BABP with respect to the liver-extracted protein. The results support the use of recombinant cL-BABP for the development of drug carriers, nanotechnologies, and innovative synthetic photoswitch systems.


Cholic Acid-Conjugated Methylcellulose-Polyethylenimine Nano-Aggregates for Drug Delivery Systems.

  • Taewan Kim‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2019‎

Cholic acid-conjugated methylcellulose-polyethylenimines (MCPEI-CAs) were synthesized and characterized for drug delivery systems. Their synthesis was confirmed by ¹H NMR and FT-IR analysis. Induced circular dichroism result with Congo red showed that methylcellulose (MC) and polyethylenimine-grafted cationic derivative (MC-PEI) would have helical conformation and random coil structure, respectively. It was found that MCPEI-CAs could form positively charged (>30 mV Zeta-potential) and spherical nano-aggregates (~250 nm Z-average size) by hydrophobic interaction of CA moieties. Critical aggregation concentration of MCPEI-CA10 was measured as 7.2 × 10-3 mg/mL. MCPEI-CA10 could encapsulate the anticancer drug doxorubicin (Dox) with 58.0% of drug loading content and 23.2% of drug loading efficiency and its release was facilitated in acidic condition. Cytotoxicity of MCPEI-CAs was increased with the increase of cholic acid (CA) graft degrees, probably due to the cellular membrane disruption by interaction with specific molecular structure of amphiphilic MCPEI-CA nano-aggregates. MCPEI-CA10/Dox nano-aggregates showed concentration-dependent anticancer activity, which could overcome the multidrug resistance of cancer cells. In this work, molecular conformation change of MC derivatives by chemical modification and a potential of MCPEI-CA10/Dox nano-aggregates for drug delivery systems were revealed.


Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis.

  • S Teng‎ et al.
  • British journal of pharmacology‎
  • 2007‎

Activation of the pregnane X receptor (PXR) has been shown to protect against cholestatic hepatotoxicity. As PXR alters the expression of numerous hepatic bile acid transporters, we sought to delineate their potential role in hepatoprotection.


Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy.

  • Alexander J Cunningham‎ et al.
  • International journal of pharmaceutics‎
  • 2020‎

Gene therapy is a promising tool for the treatment of various cancers but is hindered by the physico-chemical properties of siRNA and needs a suitable vector for the delivery of siRNA to the target tissue. Bile acid-based block copolymers offers certain advantages for the loading and delivery of siRNA since they can efficiently complex siRNA and bile acids are biocompatible endogenous molecules. In this study, we demonstrate the use of lipids as co-surfactants for the preparation of mixed micelles to improve the siRNA delivery of cholic acid-based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were polymerized on the surface of cholic acid to afford a star-shaped block copolymer with four arms (CA-PAGE-b-PEG)4. The allyl groups of PAGE were functionalized to bear primary or tertiary amines and folic acid was grafted onto the PEG chain end to increase cell uptake. (CA-PAGE-b-PEG)4 functionalized with either primary or tertiary amines show high siRNA complexation with close to 100% complexation at N/P ratio of 8. Uniform aggregates with diameters between 181 and 188 nm were obtained. DOPE, DSPE-PEG2k, and DSPE-PEG5k lipids were added as co-surfactants to help stabilize the nanoparticles in the cell culture media. Mixed micelles had high siRNA loading with close to 100% functionalization at N/P ratio of 16 and diameters ranging from 153 to 221 nm. The presence of lipids in the mixed micelles improved cell uptake with a concomitant siRNA transfection in HeLa and HeLa-GFP model cells, respectively.


Oral Cholic Acid Is Efficacious and Well Tolerated in Patients With Bile Acid Synthesis and Zellweger Spectrum Disorders.

  • James E Heubi‎ et al.
  • Journal of pediatric gastroenterology and nutrition‎
  • 2017‎

Patients with bile acid synthesis disorders (BASDs) due to single enzyme defects (SEDs) or Zellweger spectrum disorders (ZSDs) accumulate hepatotoxic atypical bile acids resulting in potentially fatal progressive liver disease. We evaluated the efficacy and safety of oral cholic acid in patients with BASD.


Mechanism of hepatic targeting via oral administration of DSPE-PEG-cholic acid-modified nanoliposomes.

  • Ying Li‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

In oral administration, gastrointestinal physiological environment, gastrointestinal epithelial cell membranes, and blood circulation are typical biological barriers to hepatic delivery of ligand-modified nanoparticle drug delivery systems. To elucidate the mechanism of oral hepatic targeting of cholic acid receptor-mediated nanoliposomes (LPs) (distearoyl phosphatidylethanolamine-polyethylene glycol-cholic acid-modified LPs, CA-LPs), evaluations were performed on colon cancer Caco-2 cell monolayers, liver cancer HepG2 cells, and a rat intestinal perfusion model. CA-LPs, ~100 nm in diameter, exhibited sustained-release behavior and had the greatest stability in rat gastrointestinal fluid and serum for both size and entrapment efficiency. CA-LPs demonstrated highest transport across Caco-2 cells and highest cellular uptake by HepG2 cells. The enhanced endocytosis of CA-LPs was found to be mediated by Na+/taurocholate cotransporting polypeptide and involved the caveolin-mediated endocytosis pathway. Further, we used fluorescence resonance energy transfer (FRET) technology to show that the CA-LPs maintained their structural integrity in part during the transport across the Caco-2 cell monolayer and uptake by HepG2 cells.


Cholic Acid Enhances Visceral Adiposity, Atherosclerosis and Nonalcoholic Fatty Liver Disease in Microminipigs.

  • Sohsuke Yamada‎ et al.
  • Journal of atherosclerosis and thrombosis‎
  • 2017‎

We have recently established a novel swine model for studies of atherosclerosis using MicrominipigsTM (µMPs) fed a high-fat/high-cholesterol diet (HcD). Using this swine model, we re-evaluated the effects of dietary cholic acid (CA) on serum lipid profile, atherosclerosis and hepatic injuries.


Cholic Acid-Derived Gemini Amphiphile Can Eradicate Interkingdom Polymicrobial Biofilms and Wound Infections.

  • Amit Arora‎ et al.
  • ACS infectious diseases‎
  • 2024‎

Biofilm infections are mainly caused by Gram-positive bacteria (GPB) like Staphylococcus aureus, Gram-negative bacteria (GNB) like Pseudomonas aeruginosa, and fungi like Candida albicans. These infections are responsible for antimicrobial tolerance, and commensal interactions of these microbes pose a severe threat to chronic infections. Treatment therapies against biofilm infections are limited to eradicating only 20-30% of infections. Here, we present the synthesis of a series of bile acid-derived molecules using lithocholic acid, deoxycholic acid, and cholic acid where two bile acid molecules are tethered through 3'-hydroxyl or 24'-carboxyl terminals with varying spacer length (trimethylene, pentamethylene, octamethylene, and dodecamethylene). Our structure-activity relationship investigations revealed that G21, a cholic acid-derived gemini amphiphile having trimethylene spacer tethered through the C24 position, is a broad-spectrum antimicrobial agent. Biochemical studies witnessed that G21 interacts with negatively charged lipoteichoic acid, lipopolysaccharide, and phosphatidylcholine moieties of GPB, GNB, and fungi and disrupts the microbial cell membranes. We further demonstrated that G21 can eradicate polymicrobial biofilms and wound infections and prevent bacteria and fungi from developing drug resistance. Therefore, our findings revealed the potential of G21 as a versatile antimicrobial agent capable of effectively targeting polymicrobial biofilms and wound infections, suggesting that it is a promising antimicrobial agent for future applications.


Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats.

  • Junying Zhang‎ et al.
  • PloS one‎
  • 2013‎

To investigate the therapeutic effects and acting mechanism of a combination of Chinese herb active components, i.e., a combination of baicalin, jasminoidin and cholic acid (CBJC) on Alzheimer's disease (AD).


Bioassay-Guided Fractionation Leads to the Detection of Cholic Acid Generated by the Rare Thalassomonas sp.

  • Fazlin Pheiffer‎ et al.
  • Marine drugs‎
  • 2022‎

Bacterial symbionts of marine invertebrates are rich sources of novel, pharmaceutically relevant natural products that could become leads in combatting multidrug-resistant pathogens and treating disease. In this study, the bioactive potential of the marine invertebrate symbiont Thalassomonas actiniarum was investigated. Bioactivity screening of the strain revealed Gram-positive specific antibacterial activity as well as cytotoxic activity against a human melanoma cell line (A2058). The dereplication of the active fraction using HPLC-MS led to the isolation and structural elucidation of cholic acid and 3-oxo cholic acid. T. actiniarum is one of three type species belonging to the genus Thalassomonas. The ability to generate cholic acid was assessed for all three species using thin-layer chromatography and was confirmed by LC-MS. The re-sequencing of all three Thalassomonas type species using long-read Oxford Nanopore Technology (ONT) and Illumina data produced complete genomes, enabling the bioinformatic assessment of the ability of the strains to produce cholic acid. Although a complete biosynthetic pathway for cholic acid synthesis in this genus could not be determined based on sequence-based homology searches, the identification of putative penicillin or homoserine lactone acylases in all three species suggests a mechanism for the hydrolysis of conjugated bile acids present in the growth medium, resulting in the generation of cholic acid and 3-oxo cholic acid. With little known currently about the bioactivities of this genus, this study serves as the foundation for future investigations into their bioactive potential as well as the potential ecological role of bile acid transformation, sterol modification and quorum quenching by Thalassomonas sp. in the marine environment.


Cholic acid as key regulator of cholesterol synthesis, intestinal absorption and hepatic storage in mice.

  • Charlotte Murphy‎ et al.
  • Biochimica et biophysica acta‎
  • 2005‎

To study the effects of cholic acid (CA) feeding on hepatic cholesterol metabolism, male sterol 12alpha-hydroxylase (CYP8B1) knockout (-/-) mice and wildtype controls (+/+) were fed either a control diet or the same diet supplemented with CA (0.1% or 0.5% w/w) or cholesterol (1% w/w). During feeding of the control diet, cholesterol synthesis was increased in CYP8B1-/- compared to +/+ mice. Both cholesterol and CA feeding down regulated mRNA expression of cholesterogenic genes and hepatic de novo cholesterol synthesis as also reflected by a concomitant decrease in the nuclear factor SREBP-2 precursor protein and increased hepatic free cholesterol levels. Mice with an intact CYP8B1 gene (CYP8B1+/+ and C57Bl/6 mice) accumulated higher concentrations of cholesteryl esters (24- and 25-fold, respectively) in their livers compared to CYP8B1-/- mice (8-fold). Feeding of CA increased intestinal cholesterol absorption in CYP8B1+/+ mice by 23% and in CYP8B1-/- mice by 50%. While plasma cholesterol did not differ between CYP8B1+/+ and -/- mice under control conditions and cholesterol feeding a decrease was seen in CYP8B1-/- but not CYP8B1+/+ mice fed CA. This study indicates that CA is an important determinant for intestinal cholesterol absorption and that the levels of the transcription factor SREBP-2 in the liver are dependent upon the combined effect of CA on intestinal cholesterol absorption and CYP7A1. The possibility is discussed that inhibition of CYP8B1 and thus CA synthesis may be beneficial for the treatment of hyperlipidemic disorders.


Intestinal epithelium penetration of liraglutide via cholic acid pre-complexation and zein/rhamnolipids nanocomposite delivery.

  • Xiaoyan Bao‎ et al.
  • Journal of nanobiotechnology‎
  • 2023‎

Oral administration offered a painless way and improved compliance for diabetics. However, the emerging GLP-1 analog peptide drugs for diabetes primarily rely on the injection route, and the development of oral dosage forms was hampered by the low oral bioavailability due to the structural vulnerability to digestive enzymes and molecule impermeability in the gastrointestinal tract.


Downregulation of Cyp7a1 by Cholic Acid and Chenodeoxycholic Acid in Cyp27a1/ApoE Double Knockout Mice: Differential Cardiovascular Outcome.

  • Line Zurkinden‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Sterol 27-hydroxylase (CYP27A1) is a key enzyme in bile acids (BAs) biosynthesis and a regulator of cholesterol metabolism. Cyp27a1/Apolipoprotein E double knockout (DKO) mice fed with western diet (WD) are protected from atherosclerosis via up-regulation of hepatic Cyp7a1 and Cyp3a11. Since feeding BAs ameliorates metabolic changes in Cyp27a1 KO mice, we tested BAs feeding on the development of atherosclerosis in DKO mice. DKO mice were fed for 8 weeks with WD containing 0.1% cholic acid (CA) (WD-CA) or chenodeoxycholic acid (CDCA) (WD-CDCA). Atherosclerotic lesions, plasma lipoprotein composition and functionality, hepatic lipid content, BAs amount and composition, expression of genes involved in lipid metabolism and BA signaling in liver and intestine as well as intestinal cholesterol absorption were assessed. Hepatic Cyp7a1 and Cyp3a11 expression were reduced by 60% after feeding with both WD-CA and WD-CDCA. After feeding with WD-CA we observed a 40-fold increase in the abundance of atherosclerotic lesions in the aortic valve, doubling of the levels of plasma total and low density lipoprotein cholesterol and halving of the level of high density lipoprotein cholesterol. Furthermore, in these mice plasma cholesterol efflux capacity decreased by 30%, hepatic BA content increased 10-fold, intestinal cholesterol absorption increased 6-fold. No such changes were observed in mice fed with WD-CDCA. Despite similar reduction on Cyp7a1 and Cyp3a11 hepatic expression, CA and CDCA have a drastically different impact on development of atherosclerosis, plasma and hepatic lipids, BAs composition and intestinal absorption. Reduced cholesterol absorption contributes largely to athero-protection in DKO mice.


Loss of SLC27A5 Activates Hepatic Stellate Cells and Promotes Liver Fibrosis via Unconjugated Cholic Acid.

  • Kang Wu‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2024‎

Although the dysregulation of bile acid (BA) composition has been associated with fibrosis progression, its precise roles in liver fibrosis is poorly understood. This study demonstrates that solute carrier family 27 member 5 (SLC27A5), an enzyme involved in BAs metabolism, is substantially downregulated in the liver tissues of patients with cirrhosis and fibrosis mouse models. The downregulation of SLC27A5 depends on RUNX family transcription factor 2 (RUNX2), which serves as a transcriptional repressor. The findings reveal that experimental SLC27A5 knockout (Slc27a5-/- ) mice display spontaneous liver fibrosis after 24 months. The loss of SLC27A5 aggravates liver fibrosis induced by carbon tetrachloride (CCI4 ) and thioacetamide (TAA). Mechanistically, SLC27A5 deficiency results in the accumulation of unconjugated BA, particularly cholic acid (CA), in the liver. This accumulation leads to the activation of hepatic stellate cells (HSCs) by upregulated expression of early growth response protein 3 (EGR3). The re-expression of hepatic SLC27A5 by an adeno-associated virus or the reduction of CA levels in the liver using A4250, an apical sodium-dependent bile acid transporter (ASBT) inhibitor, ameliorates liver fibrosis in Slc27a5-/- mice. In conclusion, SLC27A5 deficiency in mice drives hepatic fibrosis through CA-induced activation of HSCs, highlighting its significant implications for liver fibrosis treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: