Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Receptor-interacting protein kinase 3-mediated programmed cell necrosis in rats subjected to focal cerebral ischemia-reperfusion injury.

  • Yanru Dong‎ et al.
  • Molecular medicine reports‎
  • 2016‎

In the current study, the activation of tumor necrosis factor-α receptor 1 (TNFR1) and receptor-interacting protein kinase 3 (RIP3) were investigated following cerebral ischemia-reperfusion injury (CIRI). Healthy SD rats were randomly divided into 3 groups: Sham operation group, model group and inhibitor group. The model group and inhibitor group were further divided into 4 subgroups of 6, 12, 24 and 72 h following CIRI. Using right middle cerebral artery embolization, the CIRI model was generated. To confirm that the CIRI model was established, neurological scores, TTC staining and brain water content measurements were conducted. Immunohistochemistry and western blotting were conducted to investigate the expression of TNFR1 and RIP3 in the cerebral cortex. It was observed that nerve cell necrosis occurred following 6 h of CIRI. The appearance of necrotic cells was gradually increased with increasing CIRI duration. TNFR1 and RIP3 were positively expressed following 6 h of CIRI. With increasing durations of CIRI, the protein expression levels of TNFR1 and RIP3 were significantly increased. Pre‑administration with Z-VAD-FMK (zVAD) significantly increased the protein level of RIP3, however, had no effect on the levels of TNFR1, and was accompanied by a reduction in necrosis. In conclusion, RIP3‑mediated cell necrosis was enhanced by caspase blockade zVAD and the function of zVAD was independent of TNFR1 signaling following IR.


Silencing RRM2 inhibits multiple myeloma by targeting the Wnt/β‑catenin signaling pathway.

  • Xia Liu‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Ribonucleotide reductase M2 (RRM2) is one of the two subunits that comprise ribonucleotide reductase (RR), the enzyme that catalyzes the conversion of ribonucleotide 5'‑diphosphates into 2'‑deoxyribonucleotides, which are required for DNA synthesis. RRM2 is a stress response factor important for the development of several tumors. However, its role in multiple myeloma (MM) remains to be fully elucidated. The present study aimed to investigate the role of RRM2 in MM. The expression of RRM2 in patients with MM was analyzed using the Oncomine database. The results demonstrated that RRM2 expression was higher in MM compared with healthy subjects. Reverse transcription‑quantitative polymerase chain reaction and western blot results revealed that RRM2 expression was decreased following transfection with a small interfering RNA targeting RRM2 into NCI‑H929 cells. RR activity and Cell Counting Kit‑8 assays demonstrated that RRM2 silencing reduced RR activity and inhibited cell proliferation. Annexin V‑propidium iodide staining indicated that the percentage of apoptotic NCI‑H929 cells was increased following RRM2 silencing compared with that in the control group. Increased phosphorylation of H2AX indicated that RRM2 silencing may activate the DNA‑damage response pathway in NCI‑H929 cells. Western blot analysis revealed that protein levels of the apoptosis‑associated factor Bcl‑2 were reduced, whereas Bax, cleaved caspase‑3 and cleaved poly(ADP‑ribose) polymerase 1 were upregulated following RRM2 silencing compared with the control group. In addition, the results demonstrated that RRM2 silencing may inhibit target gene expression in the Wnt/β‑catenin signaling pathway by increasing the phosphorylation of glucose synthase kinase 3β. These findings indicated that RRM2 may be involved in the proliferation and apoptosis of MM cells via the Wnt/β‑catenin signaling pathway, suggesting that RRM2 may represent a novel therapeutic target for MM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: