Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 46 papers

Tripartite motif‑containing 14 regulates cell proliferation and apoptosis in cervical cancer via the Akt signaling pathway.

  • Wenjing Diao‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Tripartite motif‑containing (TRIM) 14 is a protein of the TRIM family. Studies have indicated that TRIM14 may be used as an oncogene in tumor cells, such as osteosarcoma, non‑small cell lung cancer and breast cancer through different pathways. However, the functions of TRIM14 in cervical cancer cells remain unclear. Therefore, this study aimed to investigate the functions of TRIM14 in cervical cancer cells and its underlying mechanism. Caski cells stably expressing TRIM14 and SiHa, and HeLa cells stably expressing TRIM14 short hairpin RNA were constructed by lentivirus‑mediated overexpression or knockdown systems. The effects of TRIM14 on proliferation and apoptosis of cervical cancer cells were detected by Cell Counting Kit‑8 (CCK‑8) assay and flow cytometry, respectively. In addition, reverse transcription‑quantitative (RT‑q) PCR and western blotting were used to investigate the expression levels of TRIM14 and of signaling pathway marker protein including P21, caspase‑3, cleaved caspase‑3, Akt and phosphorylated Akt. The results of RT‑qPCR and western blotting revealed that TRIM14 was highly expressed in human cervical cancer tissues and cell lines compared with adjacent normal tissues and normal cervical epithelial cells. TRIM14 also regulated cell proliferation and apoptosis of human SiHa, HeLa and Caski cervical cancer cell lines through the Akt signaling pathway. Additionally, TRIM14 protein levels were related to the clinical and pathological features of cervical cancer. CCK‑8 assay and flow cytometry demonstrated that TRIM14 expression could promote cervical cancer cell proliferation and autophagy suppression. Taken together, TRIM14‑induced cell proliferation and apoptosis inhibition may by evoked by the activation of the Akt pathway. This study demonstrated the role of TRIM14 in cervical cancer, and reveals its mechanism of action as a potential therapeutic target for cervical cancer.


Apoptosis repressor with caspase recruitment domain enhances survival and promotes osteogenic differentiation of human osteoblast cells under Zoledronate treatment.

  • Longwei Hu‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Zoledronate is one of the most potent nitrogen-containing bisphosphonates which has been demonstrated to result in osteoblast apoptosis and impact osteogenic differentiation in vitro. This effect of Zoledronate on osteoblasts may partially explain bisphosphonate‑associated osteonecrosis of the jaw, a serious complication associated with treatment with bisphosphonates. Apoptosis repressor with caspase recruitment domain (ARC) is a multifunctional inhibitor of apoptosis that is physiologically expressed predominantly in post‑mitotic cells such as cardiomyocytes, neurons and skeletal muscle cells. However, its effect on human osteoblasts remains unclear. The current study aimed to investigate the effects of ARC on human osteoblasts under the treatment of high concentrations of Zoledronate. ARC‑overexpressed human osteoblasts were established and were exposed to Zoledronate with different concentrations (0, 1 and 5 µM) in vitro. Cell numbers were detected using the MTT assay, and flow cytometry was used to identity cell apoptosis. Alkaline phosphatase staining, quantitative analysis and ectopic osteogenesis in nude mice were used to evaluate the osteogenic differentiation of ARC‑overexpressed osteoblasts. It was observed that ARC is able to reverse the inhibitory effect of Zoldronate on osteoblasts. ARC is additionally able to promote osteogenic differentiation of osteoblasts and inhibit their apoptosis. These observations suggest a critical role for ARC in the regulation of human osteoblasts under Zoledronate treatment.


Upregulation of DAPK contributes to homocysteine-induced endothelial apoptosis via the modulation of Bcl2/Bax and activation of caspase 3.

  • Xin Tian‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Hyperhomocysteinemia is characterized by an abnormally high level of homocysteine (Hcy) in the blood and is associated with cardiovascular diseases such as atherosclerosis. Endothelial dysfunction may lead to the pro-atherogenic effects associated with hyperhomocysteinemia. Endothelial dysfunction induced by Hcy has been previously investigated; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated whether death-associated protein kinase (DAPK) is involved in Hcy‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). It was determined that Hcy treatment upregulated the mRNA and protein expression levels of DAPK in HUVECs. Additionally, it was identified that the knockdown of DAPK using small interfering RNA may attenuate the Hcy-induced apoptosis and dissipation of mitochondrial membrane potential. DAPK inhibition may also reverse the effect of Hcy by the upregulation of B cell leukemia/lymphoma 2 (Bcl2) and poly ADP‑ribose polymerase, and the downregulation of Bcl2‑associated X protein (Bax) and of caspase 3. In conclusion, the present study demonstrated that DAPK contributed to the Hcy‑induced endothelial apoptosis via modulation of Bcl2/Bax expression levels and activation of caspase 3.


Anesthetic agent etiomidate induces apoptosis in N2a brain tumor cell line.

  • Hong-Tao Chen‎ et al.
  • Molecular medicine reports‎
  • 2018‎

The present study identified the cytotoxic effects of etomidate on the N2a neuroblastoma cell line. Etomidate induced apoptosis in N2a cells in a concentration‑dependent manner, which was confirmed by western blotting and flow cytometry. Phase contrast microscopy was used to analyze the effect of etomidate on morphological characteristics. The number of the apoptotic cells was increased and confirmed by DAPI and PI staining, which served as a characteristic hallmark of apoptosis. Additionally, etomidate led to loss of mitochondrial membrane potential and resulted in the generation of reactive oxygen species in N2a cells. The western blot analysis revealed that N2a cells treated with etomidate had a significant modulation of pro‑apoptotic proteins, includingpoly ADP‑ribose polymerase (PARP), cleaved PARP, caspase‑9 and procaspase‑3. In conclusion, the present study determined that etomidate induced cytotoxic and apoptotic effects in N2a brain tumor cells in vitro.


Effects of 17-AAG on the cell cycle and apoptosis of H446 cells and the associated mechanisms.

  • Xuerong Zhao‎ et al.
  • Molecular medicine reports‎
  • 2016‎

As a heat shock protein 90 inhibitor, 17-allylamino-17‑demethoxygeldanamycin (17-AAG) has been studied in numerous types of cancer, however the effects of 17-AAG on apoptosis and the cell cycle of H446 cells remain unclear. In the current study, the MTT method was used to evaluate the inhibitory effects of different durations and doses of 17‑AAG treatment on the proliferation of H446 cells. The cells were stained with Annexin-fluorescein isothiocyanate/propidium iodide and measured by flow cytometry, and the gene and protein expression levels of signal transducer and activator of transcription 3 (STAT3), survivin, cyclin D1, cyt‑C, caspase 9 and caspase 3 were determined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The results indicated that with treatment with 1.25‑20 mg/l 17‑AAG for 24 and 48 h, significant inhibition of H446 cell proliferation was observed in a time‑ and dose‑dependent manner. With treatment of 3.125, 6.25 and 12.5 mg/l 17‑AAG for 48 h, significant apoptosis and cell cycle arrest was observed. The results indicated that the gene and protein expression levels of STAT3, survivin and cyclin D1 were downregulated, and cyt‑C, caspase 9 and caspase 3 were upregulated by 17‑AAG in a dose-dependent manner when the cells were treated with 3.125 and 6.25 mg/l 17-AAG for 48 h. The results indicated that 17‑AAG is able to inhibit the cell proliferation, induce apoptosis and G2/M arrest and downregulate the gene and protein expression levels of STAT3, survivin and cyclin D1, and upregulate gene and protein expression of cyt‑C, caspase 9, caspase 3.


Effect of Survivin gene therapy via lentivirus vector on the course of intervertebral disc degeneration in an in vivo rabbit model.

  • Bin Yue‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The aim of the current study was to use gene therapy to attenuate or reverse the degenerative process within the intervertabral disc. The effect of survivin gene therapy via lentiviral vector transfection on the course of intervertebral disc degeneration was investigated in the current study in an in vivo rabbit model. A total of 15 skeletally mature female New Zealand White rabbits were randomly divided into three groups: Punctured blank control group (group A, n=5), punctured empty vector control group (group B, n=5) and the treatment group (group C, n=5). Computed tomography‑guided puncture was performed at the L3‑L4 and L4‑L5 discs, in accordance with a previously validated rabbit annulotomy model for intervertebral disc degeneration. After 3 weeks, a lentiviral vector (LV) carrying survivin was injected into the nucleus pulposus. The results demonstrated that through magnetic resonance imaging, histology, gene expression, protein content and apoptosis analyses, group A and B were observed to exhibit disc degeneration, which increased over time, and no significant difference was observed between the two groups (P>0.05). However, there was reduced disc degeneration in group C compared with the punctured control groups, and the difference was statistically significant (P<0.05). Overall, the results of the present study demonstrated that injection of the LV carrying survivin into punctured rabbit intervertebral discs acted to delay changes associated with the degeneration of the discs. Although data from animal models should be extrapolated to the human condition with caution, the present study suggests potential for the use of gene therapy to decelerate disc degeneration.


Inhibition of HtrA2 alleviates inflammatory response and cell apoptosis in lipopolysaccharide‑induced acute pneumonia in rats.

  • Xin Wang‎
  • Molecular medicine reports‎
  • 2020‎

Pneumonia is one of the commonest causes of death worldwide. High‑temperature requirement A2 (HtrA2) is a proapoptotic mitochondrial serine protease involved in caspase‑dependent or caspase‑independent cell apoptosis. UCF‑101 (5‑[5‑(2‑nitrophenyl) furfuryl iodine]‑1,3‑diphenyl‑2‑thiobarbituric acid), an inhibitor of HtrA2, has a protective effect on organs in various diseases by inhibiting cell apoptosis. The aim of the present study was to explore whether UCF‑101 has a protective effect on lungs in pneumonia. A lipopolysaccharide (LPS)‑induced pneumonia model was established in rats. UCF‑101 (2 µmol/kg) was used for treatment. Lung injury was detected by hematoxylin and eosin staining. Pro‑inflammatory cytokines and oxidative stress‑related factors were detected using corresponding test kits. TUNEL staining was used to measure the amount of cell apoptosis. Apoptosis‑associated proteins were detected by western blot assay. The present study indicated pulmonary injury induced by LPS. Treatment with UCF‑101 clearly alleviated this pulmonary damage and restored the levels of pro‑inflammatory cytokines and oxidative stress‑related factors. In addition, UCF‑101 significantly reduced LPS‑induced cell apoptosis, the release of HtrA2 and cytochrome from mitochondria to the cytoplasm and inhibited the expression of pro‑apoptotic proteins. UCF‑101 also restored the ATP level. The present results demonstrated that UCF‑101 acts as a positive regulator of acute pneumonia by inhibiting inflammatory response, oxidative stress and mitochondrial apoptosis. The present study suggests UCF‑101 as a potential candidate for pneumonia therapy.


Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo.

  • Yuqi Shi‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Pancreatic cancer is a malignant digestive system tumor with a particularly poor prognosis, and is the fourth leading cause of cancer‑associated mortality in the USA. The anti‑diabetic therapeutic agent, metformin (MET) has been demonstrated to exert anti‑tumor effects. The present study assessed the ability of MET, alone or in combination with gemcitabine (GEM), to inhibit the growth of the human CFPAC‑1 pancreatic cancer cell line in vitro and in vivo. Cell counting kit‑8 assays were performed to measure CFPAC‑1 cell viability and apoptosis was detected with annexin V/propidium iodide. Cell cycle analysis was conducted by flow cytometry. The mRNA and protein levels of B‑cell lymphoma‑extra large (Bcl‑xL), Bcl2 associated X protein (Bax), caspase‑3, survivin and cyclin D1 in CFPAC‑1 cells and tumor tissues were detected by reverse transcription‑polymerase chain reaction and western blotting, respectively. Furthermore, the expression levels of caspase‑3 and proliferating cell nuclear antigen in tumor tissues were detected by immunohistochemistry. The results demonstrated that following MET treatment, the growth of CFPAC‑1 cells and xenografts in nude mice was inhibited, the expression levels of Bcl‑xL, survivin and cyclin D1 were downregulated, while the expression levels of Bax and caspase‑3 were upregulated. These effects were enhanced when MET was administered in combination with GEM. The mechanism underlying the anti‑tumor effect of MET may be associated with the induction of cell apoptosis and the inhibition of proliferation.


Upregulation of retinoic acid receptor-β reverses drug resistance in cholangiocarcinoma cells by enhancing susceptibility to apoptosis.

  • Hong-Yue Ren‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Retinoic acid receptor β (RARβ), a known tumor suppressor gene, is frequently silenced in numerous malignant types of tumor. Recent reports have demonstrated that loss of RARβ expression may be responsible, in part, for the drug resistance observed in clinical trials. However, little is known about the role of RARβ in regulating drug sensitivity in patients with cholangiocarcinoma (CCA) with a high risk of mortality and poor outcomes. In the present study, low RARβ expression was observed in the majority of CCA tissues investigated (28/33, 84.8%). In addition, the CCA cell line QBC939, which exhibits low RARβ expression, was found to be significantly resistant to chemotherapeutic agents compared with SK‑ChA‑1, MZ‑ChA‑1 and Hccc9810 CCA cell lines, which exhibit high RARβ expression. Furthermore, upregulation of RARβ significantly enhanced the sensitivity of QBC939 cells to common chemotherapeutic agents both in vitro and in vivo. Upregulation of RARβ was shown to increase the expression of proapoptotic genes bax, bak and bim, in addition to caspase‑3 activity, and decrease the expression of antiapoptotic genes bcl‑2, bcl‑xL and mcl‑1. As a result, CCA cells were more susceptible to caspase‑dependent apoptosis. Taken together, these data suggest that RARβ upregulation rendered CCA cells more sensitive to chemotherapeutic agents by increasing the susceptibility of cells to caspase-dependent apoptosis. These results support the hypothesis that RARβ may be an ideal chemosensitization target for the treatment of patients with drug-resistant CCA.


Mechanism of G9a inhibitor BIX‑01294 acting on U251 glioma cells.

  • Ai-Shun Guo‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The present study aimed to investigate the differential expression and clinical significance of histone methyltransferase G9a, histone H3K9me2 and histone H3K9me1 in human brain glioma and adjacent tissue samples. It also aimed to observe the effect and mechanism of BIX‑01294, as an inhibitor of methyltransferase G9a, on the proliferation, apoptosis, methylation of H3K9 and H3K27, and the acetylation in U251 glioma cells in vitro. The differential expression of methyltransferase G9a, histone H3K9me2 and histone H3K9me1 in in human brain glioma and adjacent tissues were analyzed by immunohistochemistry, a growth curve of U251 cells following treatment with BIX‑01294 was determined using the MTT assay. In addition, the apoptosis percentage of U251 cells was analyzed by TUNEL assay and the expression levels of apoptosis‑associated proteins, including B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax), caspase‑9 and caspase‑3, and the acetylation of histones, including H3K27me1, H3K27me2 and H3 in U251 were analyzed by western blot following BIX‑01294 treatment. The positive rate of G9a in glioma tissues was 86% (43/50), which was significantly different from 42% (21/50) in adjacent tissues (P<0.01). The positive rate of H3K9me2 in glioma tissues was 82% (41/50), which was significantly different from 38% (19/50) in adjacent tissues (χ²=18.38; P<0.01). The expression of G9a and H3K9me2 were associated with the World Health Organization (WHO) glioma grade. The positive rate of H3K9me1 in glioma tissues was 54% (27/50) and 44% (22/50) in adjacent tissues, though this result was not significantly different (χ²=1.21, P>0.05). BIX‑01294 inhibited the proliferation of U251, downregulated expression of Bcl‑2, and upregulated expression of Bax, caspase‑3 and caspase‑9, and induced apoptosis of U251. BIX‑01294 downregulated H3K9me1, H3K9me2, H3K27me1 and H3K27me2, however, it did not affect the acetylation of H3K9me3 and H3. High expression of G9a and H3K9me2 in glioma tissue samples was associated with the WHO grade, which indicated that G9a and H3K9me2 may promote generation and development of glioma. BIX‑01294 inhibited proliferation and induced apoptosis of glioma cells, changes in methylation of H3K9 and H3K27 resulting in conformational changes of chromosome may be an underlying mechanism. BIX‑01294 may be a potential novel therapeutic agent in the treatment of glioma.


Adipose‑derived mesenchymal stem cell‑facilitated TRAIL expression in melanoma treatment in vitro.

  • Hai Xia Jing‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Adipose-derived stem cells (ADSCs) may be useful as an efficient vehicle in cell-based gene therapy of human diseases due to their ability to migrate to disease lesions. This study investigated the ability of ADSC‑harbored human tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) cDNA to facilitate TRAIL expression and induce A375 melanoma cell apoptosis as observed using a Transwell co‑culture system. A cell migration assay was used to observe ADSC migration ability. In addition, TRAIL protein expression was successfully detected by western blot analysis in ADSCs after stable transfection of TRAIL cDNA. The Transwell co‑culture system data showed that TRAIL-ADSCs could induce A375 cell apoptosis in a dose‑dependent manner. At the gene level, the killing activity of TRAIL-ADSCs was associated with activation of caspase‑4 and caspase‑8. Collectively, the data from the current study provides preclinical support of ADSC‑facilitated TRAIL expression in the treatment of melanoma. Further investigation is required to evaluate and confirm the in vivo ability of TRAIL-ADSCs in therapy of melanoma in animal models.


Oxyresveratrol induces apoptosis and inhibits cell viability via inhibition of the STAT3 signaling pathway in Saos‑2 cells.

  • Tao Lv‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Oxyresveratrol (ORES) is a natural phenolic compound with multiple biological functions including antioxidation, anti‑inflammation and neuroprotection; however, the inhibitory effect of ORES on osteosarcoma remains largely unknown. The present study aimed to determine the effects of ORES on osteosarcoma cell Saos‑2. Cell Counting Kit‑8 assay was performed to detect Soas‑2 cell viability. Annexin‑FITC/PI staining and JC‑1 staining were used to measure cell apoptosis and the change of mitochondrial membrane potential. In addition, western blotting was conducted to determine the expression levels of apoptotic proteins and the phosphorylation of STAT3. It was found that ORES inhibited cell viability and induced apoptosis of osteosarcoma Saos‑2 cells in a concentration‑dependent manner. In addition, ORES increased the expression levels of apoptotic proteases caspase‑9 and caspase‑3 and reduced mitochondrial membrane potential. In response to ORES treatment, the expression levels of pro‑apoptotic proteins, Bad and Bax, were enhanced, whereas those of anti‑apoptotic proteins, Bcl‑2 and Bcl‑xL, were reduced. In addition, the phosphorylation of STAT3 was attenuated in Saos‑2 cells after treatment with ORES. Inhibition of cell viability and apoptosis induction by ORES were rescued by enhancement of STAT3 activation upon treatment with IL‑6. Collectively, the present study indicated that ORES induced apoptosis and inhibited cell viability, which may be associated with the inhibition of STAT3 activation; thus, ORES represents a promising agent for treating osteosarcoma.


Curcumin ameliorates high‑fat diet‑induced spermatogenesis dysfunction.

  • Yang Mu‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Curcumin, a type of natural active ingredient, is derived from rhizoma of Curcuma, which possesses antioxidant, antitumorigenic and anti‑inflammatory activities. The present study aimed to investigate whether treatment with curcumin reduced high‑fat diet (HFD)‑induced spermatogenesis dysfunction. Sprague‑Dawley rats fed a HFD were treated with or without curcumin for 8 weeks. The testis/body weight, histological analysis and serum hormone levels were used to evaluate the effects of curcumin treatment on spermatogenesis dysfunction induced by the HFD. In addition, the expression levels of apoptosis associated proteins, Fas, B‑cell lymphoma (Bcl)‑xl, Bcl‑associated X protein (Bax) and cleaved‑caspase 3, were determined in the testis. The results of the present study suggested that curcumin treatment attenuated decreased testis/body weight and abnormal hormone levels. Morphological changes induced by a HFD were characterized as atrophied seminiferous tubules, decreased spermatogenetic cells and interstitial cells were improved by curcumin treatment. In addition, curcumin treatment reduced apoptosis in the testis, and decreased expression of Fas, Bax and cleaved‑caspase 3, as well as increased expression of Bcl‑xl. In conclusion, the present study revealed that curcumin treatment reduced HFD‑induced spermatogenesis dysfunction in male rats.


Protective effect of active perfusion in porcine models of acute myocardial ischemia.

  • Zanxiang Feng‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Mortality rates associated with off‑pump coronary artery bypass (CAB) are relatively high, as the majority of patients requiring CAB are at a high risk for cardiac events. The present study aimed to establish porcine models of acute myocardial ischemia, and evaluate the protective role of shunt and active perfusion. A total of 30 pigs were randomly assigned to five groups, as follows: i) Sham (control); ii) A1 (shunt; stenosis rate, 55%); iii) A2 (shunt; stenosis rate, 75%); iv) B1 (active perfusion; stenosis rate, 55%); and v) B2 (active perfusion; stenosis rate, 75%) groups. Aortic pressure (P0), left anterior descending coronary pressure (P1), and coronary effective perfusion pressure (P1/P0) were measured. The expression levels of tumor necrosis factor‑α (TNF‑α), cardiac troponin (cTnI), creatine kinase‑myocardial band (CK‑MB), interleukin (IL)‑6, IL‑10, B‑cell lymphoma 2 (Bcl‑2), and caspase‑3 were detected using enzyme‑linked immunosorbent assay or western blotting. The myocardial apoptosis rate was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Ischemia models with stenosis rates of 55 and 75% were successfully constructed following suturing of the descending artery. Compared with the control, the 55 and 75% stenosis groups demonstrated significantly decreased P1/P0, increased expression levels of TNF‑α, cTnI, CK‑MB, IL‑6, IL‑10 and caspase‑3, an increased rate of myocardial apoptosis, and a decreased expression level of anti‑apoptotic protein, Bcl‑2. At 30 min following successful establishment of the model (ST segment elevation to 1 mm), group B demonstrated significantly increased P1/P0, decreased expression levels of TNF‑α, cTnI, CK‑MB, IL‑6, IL‑10 and caspase‑3, a decreased rate of myocardial apoptosis, and an increased expression level of anti-apoptotic protein, Bcl‑2. Furthermore, the current study indicated that active perfusion was more efficacious in maintaining myocardial perfusion and alleviating ischemic injury when compared with traditional shunt perfusion.


Effect of Salvia miltiorrhiza and ligustrazine injection on myocardial ischemia/reperfusion and hypoxia/reoxygenation injury.

  • Wendong Huang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Salvia miltiorrhiza and ligustrazine are traditional Chinese medicines that have been used in combination for treatment of cardiovascular disease, including coronary heart disease, cardiac angina and atherosclerosis in Asia, in particular, China. The present study aimed to determine the effect of S. miltiorrhiza and ligustrazine injection (SLI) on myocardial ischemia/reperfusion (I/R) and hypoxia/reoxygenation (H/R) injuries via the Akt serine/threonine kinase (Akt)‑endothelial nitric oxide synthase (eNOS) signaling pathway. Male Sprague‑Dawley rats were randomly assigned into six groups: i) Sham group; ii) I/R group; iii) Low‑SLI group (6.8 mg/kg/day, i.p.); iv) Medium‑SLI group (20.4 mg/kg/day, i.p.); v) High‑SLI group (61.2 mg/kg/day, i.p.); vi) verapamil group (6 mg/kg/day, i.p.). Prior to surgery, the aforementioned groups were pretreated with a homologous drug once per day for 3 days. The effect of SLI following 35 min coronary artery occlusion and 2 h reperfusion was evaluated by determining infarct size, hemodynamics, biochemical values and histological observations. Additionally, cell viability, caspase‑3 expression, B cell leukemia/lymphoma‑2 (Bcl‑2)/Bcl‑2‑associated X protein (Bax) ratio, phosphorylated (p‑)Akt and p‑eNOS were also investigated following 2 h simulated ischemia and 2 h simulated reperfusion in H9C2 cardiomyocyte cells. Pretreatment with SLI significantly improved cardiac function in a dose‑dependent manner and reduced myocardial infarct size, creatine kinase, lactate dehydrogenase and malondialdehyde levels in blood serum. Additionally, myocardial histopathology changes in the rat model were also alleviated in SLI treatment groups. The present in vitro study revealed that treatment with SLI reduced the apoptotic rate of H9C2 cells by inhibiting the activation of caspase‑3 and increasing the Bcl‑2/Bax ratio. The effect of SLI was associated with increased phosphorylation of the survival kinase Akt at Ser473 and its downstream target eNOS following H/R. The present study determined that SLI may alleviate I/R injury in cardiomyocytes and inhibit apoptosis in rats by the activation of the Akt‑eNOS signaling pathway, and downregulation of the expression levels of proapoptotic factors, including caspase-3.


Pre-treatment with a Xingnaojing preparation ameliorates sevoflurane-induced neuroapoptosis in the infant rat striatum.

  • Zhou-Jing Yang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Xingnaojing (XNJ), is a standardized Chinese herbal medicine product derived from An Gong Niu Huang Pill. It may be involved in neuroprotection in a number of neurological disorders. Exposure to anesthetic agents during the brain growth spurt may trigger widespread neuroapoptosis in the developing brain. Thus the present study aimed to identify whether there was a neuroprotective effect of XNJ on anesthesia‑induced neuroapoptosis. Seven‑day‑old rats received treatment with 2.1% sevoflurane for 6 h. Rat pups were injected intraperitoneally with 1 or 10 ml/kg XNJ at 0.2, 24 and 48 h prior to sevoflurane exposure. The striata of neonatal rats were collected following administration of anesthesia. Western blotting and immunohistochemistry were used to analyze the expression of activated caspase 3, Bax and phosphorylated protein kinase B (p‑AKT) in the striatum. It was found that activated caspase 3 and Bax expression were upregulated in the striatum following sevoflurane treatment. Preconditioning with XNJ attenuated the neuronal apoptosis induced by sevoflurane in a dose‑dependent manner. Anesthesia reduced the expression of p‑AKT (phosphorylated at sites Thr308 and Ser473) and phosphorylated extracellular‑regulated protein kinase (p‑ERK) in the striatum. Pre‑treatment with XNJ reversed the reduction in p‑AKT, but not p‑ERK expression. These data suggest that XNJ has an antiapoptotic effect against sevoflurane‑induced cell loss in the striatum. It thus holds promise as a safe and effective neuroprotective agent. The action of XNJ on p‑AKT may make a significant contribution to its neuroprotective effect.


MicroRNA‑124 improves functional recovery and suppresses Bax‑dependent apoptosis in rats following spinal cord injury.

  • Zhongyang Xu‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Spinal cord injury (SCI) induces aberrant expression of microRNAs (miRNAs), causing various secondary injury responses, including inflammation, apoptosis and oxidative stress. However, the mechanisms underlying miRNA‑mediated apoptosis have not been fully elucidated. In the present study, a rat SCI model was established and a miRNA microarray was analyzed to detect miRNA expression profiles at different times post‑SCI. The Basso, Beattie and Bresnahan score, cresyl violet staining and terminal deoxynucleotidyl‑-transferase‑mediated dUTP nick end labeling staining were used to evaluate locomotor activity, lesion volume and neuronal cell apoptosis, respectively, at different time points post‑SCI. It was observed that numerous miRNAs were altered at 14 days post‑SCI and miR‑124 was one of the most notably downregulated miRNAs. The present results demonstrated that overexpression of miR‑124 by agomir‑124 improves functional recovery, decreases lesion size and suppresses neuronal cell apoptosis in a rat SCI model. Luciferase reporter assay demonstrated that miR‑124 inhibited apoptosis regulator BAX (Bax) expression, a key molecule in the activation of the mitochondrial apoptotic pathway, by targeting its 3'‑untranslated region in BV‑2 cells. Furthermore, restoration of Bax by pc‑DNA‑Bax inhibits the protective effect of miR‑124 in H2O2‑treated BV‑2 cells. Notably, the present results demonstrated that miR‑124 may block the mitochondrial apoptotic pathway by inhibiting Bax, cleaved‑caspase‑9 and cleaved‑caspase‑3 expression in rats following SCI. Collectively, the present results suggested that miR‑124 may improve functional recovery and supress neuronal cell apoptosis by blocking the mitochondrial apoptotic pathway in SCI rats, suggesting that miR‑124 may serve as a potential therapeutic target in SCI treatment.


Neuroprotective effects of polydatin against mitochondrial-dependent apoptosis in the rat cerebral cortex following ischemia/reperfusion injury.

  • Youguang Gao‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The neuroprotective effect of polydatin (PD) against hemorrhagic shock-induced mitochondrial injury has been described previously, and mitochondrial dysfunction and apoptosis were reportedly involved in ischemic stroke. In the present study the neuroprotective effect of PD in preventing apoptosis was evaluated following induction of focal cerebral ischemia by middle cerebral artery occlusion (MCAO) in rats. PD (30 mg/kg) was administered by caudal vein injection 10 min prior to ischemia/reperfusion (I/R) injury. 24 h following I/R injury, ameliorated modified neurological severity scores (mNSS) and reduced infarct volume were observed in the PD treated group. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Annexin V/propidium iodide assays demonstrated the anti-apoptotic effect of PD in the ischemic cortex. In addition, PD improved I/R injury‑induced mitochondrial dysfunction, reflected by morphological observations and measurements of mitochondrial membrane potential and intracellular ATP measurement. Western blot analysis revealed an increase in B‑cell lymphoma 2 apoptosis regulator (Bcl-2) expression, and a decrease in Bcl‑2‑associated protein X apoptosis regulator expression in the PD group in comparison with the vehicle treated group. PD treatment also prevented the release of cytochrome c from mitochondria into the cytoplasm, and blunted the activities of caspase‑9 and caspase‑3. Furthermore, PD treatment decreased the levels of reactive oxygen species in neurons isolated from the ischemic cortex. The findings of this study, therefore, suggest that PD has a dual effect, ameliorating both oxidative stress and mitochondria‑dependent apoptosis, making it a promising new therapy for the treatment of ischemic stroke.


Lycopene inhibits the cell proliferation and invasion of human head and neck squamous cell carcinoma.

  • Min Ye‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Lycopene has been shown to be associated with anticancer effects in numerous tumor types. However, the underlying mechanisms of lycopene in human head and neck squamous cell carcinoma (HNSCC) remain to be determined. The present study aimed to investigate the involvement of lycopene overload and the cytotoxic effects of lycopene on HNSCC cells, and to determine the possible mechanisms involved. Treatment with lycopene at a dose of >10 µM for >24 h inhibited the growth of FaDu and Cal27 cells in a time‑ and dose‑dependent manner. The clearest increase in growth inhibition was due to the apoptotic population being significantly increased. The invasion abilities decreased with 25 µM lycopene exerting significant inhibitory effects (P<0.01). Mechanistic studies revealed that lycopene induced the upregulation of the pro‑apoptotic protein, B‑cell lymphoma‑associated X protein, and therefore, resulted in the inhibition of the protein kinase B and mitogen‑activated protein kinase signaling pathway. These data provided insights into the antitumor activity of lycopene in HNSCC cells.


Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer.

  • Kwangkho Kim‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Short‑chain fatty acids (SCFAs; butyrate, propionate and acetate) are metabolites derived from the gut microbiota via dietary fiber fermentation. In colon cancer, treatment with SCFAs, mainly butyrate and propionate, suppresses cell proliferation, migration and invasion. Furthermore, although sodium butyrate is known to induce cell apoptosis in lung cancer, the anticancer effects of sodium propionate (SP) on lung cancer are not well understood. In the present study, SP treatment induced cell cycle arrest, especially in the G2/M phase, and cell apoptosis in the H1299 and H1703 lung cancer cell lines. As determined by reverse transcription‑quantitative PCR and western blotting, Survivin and p21 expression levels were significantly affected by SP treatment, suggesting that SP treatment suppressed cell proliferation in these lung cancer cell lines. Thus, it was proposed that the SP‑mediated regulation of Survivin and p21 in lung cancer may be applicable to lung cancer therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: