Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 566 papers

Short-Chain Fatty Acids Weaken Ox-LDL-Induced Cell Inflammatory Injury by Inhibiting the NLRP3/Caspase-1 Pathway and Affecting Cellular Metabolism in THP-1 Cells.

  • Chengxue Yi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Short-chain fatty acids (SCFAs) are important anti-inflammatory metabolites of intestinal flora. Oxidized low-density lipoprotein (ox-LDL)-induced macrophage activation is critical for the formation of atherosclerosis plaque. However, the association between SCFAs and ox-LDL-induced macrophage activation with respect to the formation of atherosclerosis plaque has not yet been elucidated. The present study investigated whether SCFAs (sodium acetate, sodium propionate, and sodium butyrate) can affect ox-LDL-induced macrophage activation and potential signaling pathways via regulation of the expression of the NLRP3/Caspase-1 pathway. Using human monocyte-macrophage (THP-1) cells as a model system, it was observed that ox-LDL not only induced cell inflammatory injury but also activated the NLRP3/Caspase-1 pathway. The exogenous supplementation of three SCFAs could significantly inhibit cell inflammatory injury induced by ox-LDL. Moreover, three SCFAs decreased the expression of IL-1β and TNF-α via the inactivation of the NLRP3/Caspase-1 pathway induced by ox-LDL. Furthermore, three SCFAs affected cellular metabolism in ox-LDL-induced macrophages, as detected by untargeted metabolomics analysis. The results of the present study indicated that three SCFAs inhibited ox-LDL-induced cell inflammatory injury by blocking the NLRP3/Caspase-1 pathway, thereby improving cellular metabolism. These findings may provide novel insights into the role of SCFA intervention in the progression of atherosclerotic plaque formation.


Anti-Inflammatory activity of chrysophanol through the suppression of NF-kappaB/caspase-1 activation in vitro and in vivo.

  • Su-Jin Kim‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2010‎

Chrysophanol is a member of the anthraquinone family and has multiple pharmacological effects, but the exact mechanism of the anti-inflammatory effects of chrysophanol has yet to be thoroughly elucidated. In this study, we attempted to determine the effects of chrysophanol on dextran sulfate sodium (DSS)-induced colitis and lipopolysaccharide (LPS)-induced inflammatory responses in mouse peritoneal macrophages. The findings of this study demonstrated that chrysophanol effectively attenuated overall clinical scores as well as various pathological markers of colitis. Additionally, chrysophanol inhibited the production of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 and the expression of cyclooxygenase (COX)-2 levels induced by LPS. We showed that this anti-inflammatory effect of chrysophanol is through suppression of the activation of NF-kappaB and caspase-1 in LPS-stimulated macrophages. These results provide novel insights into the pharmacological actions of chrysophanol as a potential molecule for use in the treatment of inflammatory diseases.


Caspase-1 Regulates the Apoptosis and Pyroptosis Induced by Phthalocyanine Zinc-Mediated Photodynamic Therapy in Breast Cancer MCF-7 Cells.

  • Chunjie Ma‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Photodynamic therapy (PDT) is an innovative and perspective antineoplastic therapy. Tetra-α-(4-carboxyphenoxy) phthalocyanine zinc (TαPcZn)-mediated PDT (TαPcZn-PDT) has shown antitumor activity in some tumor cells, but the manner in which caspase-1 is involved in the regulation of apoptosis and pyroptosis in the TαPcZn-PDT-treated breast cancer MCF-7 cells is unclear. Therefore, effects of TαPcZn-PDT on cytotoxicity, cell viability, apoptosis, pyroptosis, cellular reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), caspase-1, caspase-3, and nuclear transcription factor-κB (NFκB) in MCF-7 cells was firstly examined in the present study. The findings demonstrated that TαPcZn-PDT resulted in the increase in cytotoxicity and the percentage of apoptotic and pyroptotic cells, the reduction in cell viability and ΔΨm, the production of ROS and the activation of caspase-1, caspase-3 and NFκB in MCF-7 cells. Furthermore, the results also revealed that siRNA-targeting caspase-1 (siRNA-caspase-1) attenuated the effect of TαPcZn-PDT on apoptosis, pyroptosis and the activation of caspase-1, caspase-3 and NFκB in MCF-7 cells. Taken together, we conclude that caspase-1 regulates the apoptosis and pyroptosis induced by TαPcZn-PDT in MCF-7 cells.


Euphorbia formosana root extract induces apoptosis by caspase-dependent cell death via Fas and mitochondrial pathway in THP-1 human leukemic cells.

  • Yi-Jen Hsieh‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

Acute myeloid leukemia (AML), a very rare type of cancer, generally affects patients over 50 years old. While clinical drugs to treat advanced stages of AML exist, the disease becomes increasingly resistant to therapies. Euphorbia formosana Hayata (EF) is a native Taiwanese medicinal plant used to treat rheumatism, liver cirrhosis, herpes zoster, scabies, and photoaging, along with tumor suppression. However, the mechanisms by which it suppresses tumors have not been explored. Here, we provide molecular evidence that a hot-water extract of Euphorbia formosana (EFW) selectively inhibited the growth of human leukemic cancer cells more than other solid human cancer cell lines. Most importantly, the plant extract had limited toxicity toward healthy peripheral blood mononuclear cells (PBMCs). After THP-1 leukemic cells were treated with 50-100 µg/mL EFW for one day, the S phase DNA content of the cells increased, while treatment with 200-400 µg/mL caused the cells to accumulate in the G0/G1 phase. Notably, EFW did not affect A-549 lung cancer cells. The effectiveness of EFW against THP-1 cells may be through caspase-dependent apoptosis in leukemic cells, which is mediated through the Fas and mitochondrial pathways. The potent antileukemic activity of EFW in vitro warrants further investigation of this plant to treat leukemias and other malignancies.


ST2825, a Small Molecule Inhibitor of MyD88, Suppresses NF-κB Activation and the ROS/NLRP3/Cleaved Caspase-1 Signaling Pathway to Attenuate Lipopolysaccharide-Stimulated Neuroinflammation.

  • Shan-Shan Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Neuroinflammation characterized by microglia activation is the mechanism of the occurrence and development of various central nervous system diseases. ST2825, as a peptide-mimetic MyD88 homodimerization inhibitor, has been identified as crucial molecule with an anti-inflammatory role in several immune cells, especially microglia. The purpose of the study was to investigate the anti-neuroinflammatory effects and the possible mechanism of ST2825. Methods: Lipopolysaccharide (LPS) was used to stimulate neuroinflammation in male BALB/c mice and BV2 microglia cells. The NO level was determined by Griess Reagents. The levels of pro-inflammatory cytokines and chemokines were determined by ELISA. The expressions of inflammatory proteins were determined by real-time PCR and Western blotting analysis. The level of ROS was detected by DCFH-DA staining. Results: In vivo, the improved levels of LPS-induced pro-inflammatory factors, including TNF-α, IL-6, IL-1β, MCP-1 and ICAM-1 in the cortex and hippocampus, were reduced after ST2825 treatment. In vitro, the levels of LPS-induced pro-inflammatory factors, including NO, TNF-α, IL-6, IL-1β, MCP-1, iNOS, COX2 and ROS, were remarkably decreased after ST2825 treatment. Further research found that the mechanism of its anti-neuroinflammatory effects appeared to be associated with inhibition of NF-κB activation and down-regulation of the NLRP3/cleaved caspase-1 signaling pathway. Conclusions: The current findings provide new insights into the activity and molecular mechanism of ST2825 for the treatment of neuroinflammation.


Matrix Metalloproteinase Triple-Helical Peptide Inhibitors: Potential Cross-Reactivity with Caspase-11.

  • Anna M Knapinska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Triple-helical peptide inhibitors (THPIs) of matrix metalloproteinases (MMPs) have recently been demonstrated to be effective in a variety of animal models of disease, coincidental with knockout studies. However, passenger mutations have been described in MMP knockout mice that impact the activity of other proteins, including caspase-11. Thus, it is possible that the results observed with THPIs may be based on inhibition of caspase-11, not MMPs. The present study evaluated whether THPIs were cross-reactive with caspase-11. Two different THPIs were tested, one that is known to inhibit MMP-1 and MMP-8 (GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI) and one that is selective for MMP-2 and MMP-9 (α1(V)GlyΨ{PO2H-CH2}Val [mep14,32,Flp15,33] THPI). No inhibition of caspase-11 was observed with GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI, even at an inhibitor concentration of 5 μM, while 5 μM α1(V)GlyΨ{PO2H-CH2}Val [mep14,32,Flp15,33] THPI exhibited 40% inhibition of caspase-11. Further testing of GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI revealed nM inhibition of MMP-2, MMP-9, and MMP-13. Thus, the effectiveness of GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI observed in a sepsis animal model may not be due to caspase-11 inhibition, but may be due to broader MMP inhibition than previously thought.


Short Peptides with Uncleavable Peptide Bond Mimetics as Photoactivatable Caspase-3 Inhibitors.

  • Tim Van Kersavond‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Chemical probes that covalently interact with proteases have found increasing use for the study of protease function and localization. The design and synthesis of such probes is still a bottleneck, as the strategies to target different families are highly diverse. We set out to design and synthesize chemical probes based on protease substrate specificity with inclusion of an uncleavable peptide bond mimic and a photocrosslinker for covalent modification of the protease target. With caspase-3 as a model target protease, we designed reduced amide and triazolo peptides as substrate mimetics, whose sequences can be conveniently constructed by modified solid phase peptide synthesis. We found that these probes inhibited the caspase-3 activity, but did not form a covalent bond. It turned out that the reduced amide mimics, upon irradiation with a benzophenone as photosensitizer, are oxidized and form low concentrations of peptide aldehydes, which then act as inhibitors of caspase-3. This type of photoactivation may be utilized in future photopharmacology experiments to form protease inhibitors at a precise time and location.


Protective effects of Chlorella-derived peptide against UVC-induced cytotoxicity through inhibition of caspase-3 activity and reduction of the expression of phosphorylated FADD and cleaved PARP-1 in skin fibroblasts.

  • Mei Fen Shih‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

UVC irradiation induces oxidative stress and leads to cell death through an apoptotic pathway. This apoptosis is caused by activation of caspase-3 and formation of poly(ADP-ribose) polymerase-1 (PARP-1). In this study, the underlying mechanisms of Chlorella derived peptide (CDP) activity against UVC-induced cytotoxicity were investigated. Human skin fibroblasts were treated with CDP, vitamin C, or vitamin E after UVC irradiation for a total energy of 15 J/cm². After the UVC exposure, cell proliferation and caspase-3 activity were measured at 12, 24, 48, and 72 h later. Expression of phosphorylated FADD and cleaved PARP-1 were measured 16 h later. DNA damage (expressed as pyrimidine (6-4) pyrimidone photoproducts DNA concentration) and fragmentation assay were performed 24 h after the UVC exposure. Results showed that UVC irradiation induced cytotoxicity in all groups except those treated with CDP. The caspase-3 activity in CDP-treated cells was inhibited from 12 h onward. Expression of phosphorylated FADD and cleaved PARP-1 were also reduced in CDP-treated cells. Moreover, UVC-induced DNA damage and fragmentation were also prevented by the CDP treatment. This study shows that treatment of CDP provides protective effects against UVC-induced cytotoxicity through the inhibition of caspase-3 activity and the reduction of phosphorylated FADD and cleaved PARP-1 expression.


Strophalloside induces apoptosis of SGC-7901 cells through the mitochondrion-dependent caspase-3 pathway.

  • Xue-Jiao Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2015‎

Cardenolides with special chemical structures have been considered as effective anti-cancer drugs in clinic trials. Strophalloside is a cardenolide we recently isolated from Antiaris toxicaria obtained from Hainan, China. The aim of this study was to investigate the possible anticancer effects induced by strophalloside and the underlying molecular mechanism. Gastric carcinoma SGC-7901 cells were treated with strophalloside at various concentrations for different times, and resulting cell viability was determined by the MTT assay, and the motility and invasion of tumor cells were assessed by the Transwell chamber assay. Apoptosis were measured by Annexin V-FITC/PI and Hoechst staining. The changes of mitochondrial transmembrane potential were examined by a JC-1 kit. The expressions of pro-apoptotic protein cytochrome c, caspase-3 and caspase-9 were detected by western blotting analysis. The results showed that strophalloside was capable of reducing cell viability, inhibiting cell growth, and suppressing cell migration and invasion in a time- and dose-dependent manner. Mitochondrial membrane potential declined and the concentration of cytochrome c increased in cytoplasm and caspase-3 and caspase-9 were cleaved into activated states, suggesting that cytochrome c was released from the mitochondrion to cytoplasm and finally activated the caspase-dependent apoptosis pathway. Our results indicate that strophalloside is a potential anticancer drug.


A Fluorescence-Polarization-Based Lipopolysaccharide-Caspase-4 Interaction Assay for the Development of Inhibitors.

  • Jinsu An‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Recognition of intracellular lipopolysaccharide (LPS) by Caspase-4 (Casp-4) is critical for host defense against Gram-negative pathogens. LPS binds to the N-terminal caspase activation and recruitment domain (CARD) of procaspase-4, leading to auto-proteolytic activation followed by pro-inflammatory cytokine release and pyroptotic cell death. Aberrant hyper-activation of Casp-4 leads to amplification of the inflammatory response linked to sepsis. While the active site of a caspase has been targeted with peptide inhibitors, inhibition of LPS-Casp-4 interaction is an emerging strategy for the development of selective inhibitors with a new mode of action for treating infectious diseases and sepsis induced by LPS. In this study, a high-throughput screening (HTS) system based on fluorescence polarization (FP) was devised to identify inhibitors of the LPS and Casp-4 interaction. Using HTS and IC50 determination and subsequently showing inhibited Casp-4 activity, we demonstrated that the LPS-Casp-4 interaction is a druggable target for Casp-4 inhibition and possibly a non-canonical inflammatory pathway.


Major Contribution of Caspase-9 to Honokiol-Induced Apoptotic Insults to Human Drug-Resistant Glioblastoma Cells.

  • Gong-Jhe Wu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Temozolomide (TMZ)-induced chemoresistance to human glioblastomas is a critical challenge now. Our previous studies showed that honokiol, a major bioactive constituent of Magnolia officinalis (Houpo), can kill human glioblastoma cells and suppresses glioblastoma growth. This study was further aimed to evaluate the effects of honokiol on human drug-resistant glioblastoma cells and the possible mechanisms. The results by data mining in the cancer genome atlas (TCGA) database and immunohistochemistry displayed that expression of caspase-9 mRNA and protein in human glioblastomas was induced. Human TMZ-resistant U87-MG-R9 glioblastoma cells were selected and prepared from human drug-sensitive U87-MG cells. Compared to human drug-sensitive U87-MG cells, TMZ did not affect viability of U87-MG-R9 glioblastoma cells. Interestingly, treatment with honokiol suppressed proliferation and survival of human drug-resistant glioblastoma cells in concentration- and time-dependent manners. Compared to caspase-8 activation, honokiol chiefly increased activity of caspase-9 in U87-MG-R9 cells. Successively, levels of cleaved caspase-3 and activities of caspase-3 and caspase-6 in human TMZ-tolerant glioblastoma cells were augmented following honokiol administration. In parallel, honokiol triggered DNA fragmentation of U87-MG-R9 cells. Accordingly, treatment of human TMZ-resistant glioblastoma cells with honokiol induced cell apoptosis but did not affect cell necrosis. Fascinatingly, suppressing caspase-9 activity using its specific inhibitors repressed honokiol-induced caspase-6 activation, DNA fragmentation, and cell apoptosis. Taken together, this study has shown the major roles of caspase-9 in transducing honokiol-induced mitochondria-dependent apoptosis in human drug-resistant glioblastoma cells. Thus, honokiol may be clinically applied as a drug candidate for treatment of glioblastoma patients with chemoresistance.


Aviculin Isolated from Lespedeza cuneata Induce Apoptosis in Breast Cancer Cells through Mitochondria-Mediated Caspase Activation Pathway.

  • Dahae Lee‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The global incidence of breast cancer has increased. However, there are many impediments to the development of safe and effective anticancer drugs. The aim of the present study was to evaluate the effect of aviculin isolated from Lespedeza cuneata (Dum. Cours.) G. Don. (Fabaceae) on MCF-7 human breast cancer cells and determine the underlying mechanism. Using the bioassay-guided isolation by water soluble tetrazolium salt (WST-1)-based Ez-Cytox assay, nine compounds (four lignan glycosides (1-4), three flavonoid glycosides (5-7), and two phenolic compounds (8 and 9)) were isolated from the ethyl acetate (EA) fraction of the L. cuneata methanolic extract. Of these, aviculin (2), a lignan glycoside, was the only compound that reduced metabolic activity on MCF-7 cells below 50% (IC50: 75.47 ± 2.23 μM). The underlying mechanism was analyzed using the annexin V Alexa Fluor 488 binding assay and Western blotting. Aviculin (2) was found to induce apoptotic cell death through the intrinsic apoptosis pathway, as indicated by the increased expression of initiator caspase-9, executioner caspase-7, and poly (ADP-ribose) polymerase (PARP). Aviculin (2)-induced apoptotic cell death was accompanied by an increase in the Bax/Bcl-2 ratio. These findings demonstrated that aviculin (2) could induce breast cancer cell apoptosis through the intrinsic apoptosis pathway, and it can therefore be considered an excellent candidate for herbal treatment of breast cancer.


Design, Synthesis, Molecular Docking, Antiapoptotic and Caspase-3 Inhibition of New 1,2,3-Triazole/Bis-2(1H)-Quinolinone Hybrids.

  • Essmat M El-Sheref‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

A series of novel 1,2,3-triazoles hybridized with two quinolin-2-ones, was designed and synthesized through click reactions. The structures of the synthesized compounds were elucidated by NMR, IR, and mass spectra in addition to elemental analysis. The synthesized compounds were assessed for their antiapoptotic activity in testis, as testicular torsion is the main cause of male infertility. This effect was studied in light of decreasing tissue damage induced by I/R in the testis of rats using N-acetylcysteine (NAC) as an antiapoptotic reference. Compounds 6a-c were the most active antiapoptotic hybrids with significant measurements for malondialdehyde (MDA) and total antioxidant capacity (TAC) and the apoptotic biomarkers (testicular testosterone, TNFα, and caspase-3) in comparison to the reference. A preliminary mechanistic study was performed to improve the antiapoptotic activity through caspase-3 inhibition. A compound assigned as 6-methoxy-4-(4-(((2-oxo-1,2-dihydroquinolin-4-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)quinolin-2(1H)-one (6c) was selected as a representative of the most active hybrids in comparison to NAC. Assay of cytochrome C for 6c revealed an attenuation of cytochrome C level about 3.54 fold, comparable to NAC (4.13 fold). In caspases-3,8,9 assays, 6c was found to exhibit more potency and selectivity toward caspase-3 than other caspases. The testicular histopathological investigation was carried out on all targeted compounds 6a-g, indicating a significant improvement in the spermatogenesis process for compounds 6a-c if compared to the reference relative to the control. Finally, molecular docking studies were done at the caspase-3 active site to suggest possible binding modes. Hence, it could conceivably be hypothesized that compounds 6a-c could be considered good lead candidate compounds as antiapoptotic agents.


(-)-Asarinin from the Roots of Asarum sieboldii Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells.

  • Miran Jeong‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Two tetrahydrofurofurano lignans (1 and 2), four phenylpropanoids (3⁻6), and two alkamides (7 and 8) were isolated from the EtOAc-soluble fraction of the roots of Asarum sieboldii. The chemical structures of the isolates were identified by analysis of spectroscopic data measurements, and by a comparison of their data with published values. The isolates (1, 2, 4⁻8) were evaluated for their cytotoxicity against human ovarian cancer cells (A2780 and SKOV3) and immortalized ovarian surface epithelial cells (IOSE80PC) using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay. Of the isolates, (-)-asarinin (1) exhibited the most potent cytotoxicity to both A2780 and SKOV3 cells. A propidium iodide/annexin V-fluorescein isothiocyanate (V-FITC) double staining assay showed that (-)-asarinin (1) induces apoptotic cell death in ovarian cancer cells. In addition, (-)-asarinin (1) increased the activation of caspase-3, caspase-8, and caspase-9 in ovarian cancer cells. Pretreatment with caspase inhibitors attenuated the cell death induced by (-)-asarinin (1). In conclusion, our findings show that (-)-asarinin (1) from the roots of A. sieboldii may induce caspase-dependent apoptotic cell death in human cancer cells.


New Insight into the Concanavalin A-Induced Apoptosis in Hepatocyte of an Animal Model: Possible Involvement of Caspase-Independent Pathway.

  • Xiangli Zhao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Concanavalin A (Con A) is known to be a T-cell mitogen and has been shown to induce hepatitis in mice through the triggering of conventional T cells and NKT cells. However, it remains unknown whether Con A itself can directly induce rapid hepatocyte death in the absence of a functional immune system. Here, by using an immunodeficient mouse model, we found Con A rapidly induced liver injury in vivo despite a lack of immunocyte involvement. We further observed in vitro that hepatocytes underwent a dose-dependent but caspase-independent apoptosis in response to Con A stimulation in vitro. Moreover, transcriptome RNA-sequencing analysis revealed that apoptosis pathways were activated in both our in vivo and in vitro models. We conclude that Con A can directly induce rapid but non-classical apoptosis in hepatocytes without the participation of immunocytes. These findings provide new insights into the mechanism of Con A-induced hepatitis.


SB365, Pulsatilla Saponin D Induces Caspase-Independent Cell Death and Augments the Anticancer Effect of Temozolomide in Glioblastoma Multiforme Cells.

  • Jun-Man Hong‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

SB365, a saponin D extracted from the roots of Pulsatilla koreana, has been reported to show cytotoxicity in several cancer cell lines. We investigated the effects of SB365 on U87-MG and T98G glioblastoma multiforme (GBM) cells, and its efficacy in combination with temozolomide for treating GBM. SB365 exerted a cytotoxic effect on GBM cells not by inducing apoptosis, as in other cancer cell lines, but by triggering caspase-independent cell death. Inhibition of autophagic flux and neutralization of the lysosomal pH occurred rapidly after application of SB365, followed by deterioration of mitochondrial membrane potential. A cathepsin B inhibitor and N-acetyl cysteine, an antioxidant, partially recovered cell death induced by SB365. SB365 in combination with temozolomide exerted an additive cytotoxic effect in vitro and in vivo. In conclusion, SB365 inhibits autophagic flux and induces caspase-independent cell death in GBM cells in a manner involving cathepsin B and mainly reactive oxygen species, and its use in combination with temozolomide shows promise for the treatment of GBM.


Identification and Characterization of the Caspase-Mediated Apoptotic Activity of Teucrium mascatense and an Isolated Compound in Human Cancer Cells.

  • Neena Gopinathan Panicker‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Plants of the genus Teucrium (Lamiaceae or Labiatae family) are known historically for their medicinal value. Here, we identify and characterize the anticancer potential of T. mascatense and its active compound, IM60, in human cancer cells. The anti-proliferative effect of a T. mascatense methanol extract and its various fractions were analyzed in MCF-7 and HeLa cells in a dose- and time dependent manner. The dichloromethane fraction (TMDF) was observed to be the most effective with cytotoxicity against a more expanded series of cell lines, including MDA-MB-231. A time and dose-dependent toxicity profile was also observed for IM60; it could induce rapid cell death (within 3 h) in MCF-7 cells. Activation of caspases and PARP, hallmarks of apoptotic cell death pathways, following treatment with TMDF was demonstrated using western blot analysis. Inversion of the phosphatidylserine phospholipid from the inner to the outer membrane was confirmed by annexin V staining that was inhibited by the classical apoptosis inhibitor, Z-VAK-FMK. Changes in cell rounding, shrinkage, and detachment from other cells following treatment with TMDF and IM60 also supported these findings. Finally, the potential of TMDF and IM60 to induce enzymatic activity of caspases was also demonstrated in MCF-7 cells. This study, thus, not only characterizes the anticancer potential of T. mascatense, but also identifies a lead terpenoid, IM60, with the potential to activate anticancer cell death pathways in human cancer cells.


Pseudolaric Acid B Induces Growth Inhibition and Caspase-Dependent Apoptosis on Head and Neck Cancer Cell lines through Death Receptor 5.

  • Su-Jung Choi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Pseudolaric Acid B (PAB), diterpenoid isolated from the root bark of Pseudolarix kaempferi Gordon tree (Pinaceae), exhibits an anti-proliferative and apoptotic activity in various cancer cell lines but to date, the effects of PAB on head and neck cancer (HNC) cell lines remain to be elucidated. In this study, we showed that PAB significantly inhibited the viability and caspase-dependent apoptosis in HN22 cell line. PAB-induced apoptosis is through inducing death receptor 5 (DR5) together with the increase in the expression of cleaved caspase-8. It also inhibited the proliferations and induced apoptosis through DR5 in other three HNC cell lines (HSC3, Ca9.22, and HSC4). Extending our in vitro findings, we found that ethanol extract of Pseudolarix kaempferi (2.5 mg/kg/day) reduced tumor growth in a xenograft model bearing HN22 cell line without any change in body weight. DR5 were also found to be increased in tumors tissue of PAB-treated mice without any apparent histopathological changes in liver or kidney tissues. Taken together, PAB may be a potential lead compound for chemotherapeutic agents against head and neck cancer.


Nujiangexathone A, a Novel Compound Derived from Garcinia nujiangensis, Induces Caspase-Dependent Apoptosis in Cervical Cancer through the ROS/JNK Pathway.

  • Li Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Nujiangexathone A (NJXA), a novel compound derived from Garcinia nujiangensis, has been demonstrated to inhibit the proliferation of several human cancer cell lines. This study is the first to demonstrate the apoptosis inductive activities of NJXA and the possible underlying mechanisms. Our results demonstrated that NJXA inhibited colony formation by HeLa and SiHa cells in a dose-dependent manner. An Annexin V-FITC/PI staining assay showed that NJXA strongly triggered apoptosis in a dose-dependent manner. Western blotting analyses showed that NJXA induced the caspase-dependent apoptosis of HeLa and SiHa cells by triggering a series of events, including changes in the levels of Bcl-2 family proteins, cytochrome c release, caspase-3 activation, and chromosome fragmentation. Furthermore, we demonstrated that NJXA induced cell apoptosis by activating the reactive oxygen species (ROS)-mediated JNK signaling pathway. Consistent with this finding, a ROS scavenger, N-acetyl-l-cysteine (NAC, 10 mM), hindered NJXA-induced apoptosis and attenuated the sensitivity of HeLa and SiHa cells to NJXA. In vivo results further confirmed that the tumor inhibitory effect of NJXA was partially through the induction of apoptosis. Taken together, our results demonstrated that NJXA induced the apoptosis of HeLa and SiHa cells through the ROS/JNK signaling pathway, indicating that NJXA could be important candidate for the clinical treatment of cervical cancer.


Design, Synthesis, and Antiproliferative Evaluation of Novel Coumarin/2-Cyanoacryloyl Hybrids as Apoptosis Inducing Agents by Activation of Caspase-Dependent Pathway.

  • Yu-Ying Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

A series of novel coumarin/2-cyanoacryloyl hybrids were prepared and evaluated for their in vitro anticancer activity. Among them, two analogs 5p and 5q showed promising antiproliferative activity against a panel of cancer cell lines, including A549, H157, HepG2, MCF7, MG63, and U2OS. Particularly, 5q showed the most potent activity towards MG63 cells with an IC50 value of 5.06 ± 0.25 μM. Morphological observation and 4,6-diamidino-2-phenylindole (DAPI) staining assay showed that 5q-treated MG63 cells displayed significant apoptosis characteristics. Moreover, flow cytometric detection of phosphatidylserine externalization revealed that 5q induced MG63 apoptosis in a dose-dependent manner. Real-time PCR and western blot assay further confirmed that 5q had strong effects to induce MG63 cell apoptosis, suggesting that the action was associated with down-regulation of the anti-apoptotic protein Bcl-2, upregulation of pro-apoptotic protein Bax, and induced activation of caspase-3, 8, and 9. The present results provide a new chemotype for anticancer drug development and continuing investigation into candidates with coumarin/2-cyanoacryloyl scaffold is warranted.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: