Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 566 papers

Ginsenoside Re Inhibits ROS/ASK-1 Dependent Mitochondrial Apoptosis Pathway and Activation of Nrf2-Antioxidant Response in Beta-Amyloid-Challenged SH-SY5Y Cells.

  • Meichen Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Accumulation of amyloid-β (Aβ), which results in the formation of senile plaques that cause oxidative damage and neuronal cell death, has been accepted as the major pathological mechanism of Alzheimer's disease (AD). Hence, inhibition of Aβ-induced oxidative damage and neuronal cell apoptosis represents the effective strategies in combating AD. Ginsenoside Re (Re) has pharmacological effects against Aβ-induced neurotoxicity. However, its molecular mechanism remains elusive. The present study evaluated the effect of Re against Aβ-induced cytotoxicity and apoptosis in SH-SY5Y cells, and investigated the underlying mechanism. We demonstrate that Re inhibits the Aβ-triggered mitochondrial apoptotic pathway, as indicated by maintenance of mitochondrial functional, elevated Bcl-2/Bax ratio, reduced cytochrome c release, and inactivation of caspase-3/9. Re attenuated Aβ-evoked reactive oxygen species (ROS) production, apoptosis signal-regulating kinase 1 (ASK1) phosphorylation, and JNK activation. ROS-scavenging abrogated the ability of Re to alter ASK-1 activation. Simultaneously, inhibition of JNK abolished Re-induced Bax downregulation in Aβ-challenged SH-SY5Y cells. In addition, Re enhanced activation of the nuclear factor-E2-related factor 2 (Nrf2) in Aβ-induced SH-SY5Y cells. Knockdown of Nrf2 by small interfering RNA targeting Nrf2 abolished the protective effect of Re. Our findings indicate that Re could be a potential therapeutic approach for the treatment of AD.


Sodium Butyrate Attenuates AGEs-Induced Oxidative Stress and Inflammation by Inhibiting Autophagy and Affecting Cellular Metabolism in THP-1 Cells.

  • Man Yan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

In recent years, sodium butyrate has gained increased attention for its numerous beneficial properties. However, whether sodium butyrate could alleviate inflammatory damage by macrophage activation and its underlying mechanism remains unclear. The present study used an advanced glycosylation products- (AGEs-) induced inflammatory damage model to study whether sodium butyrate could alleviate oxidative stress, inflammation, and metabolic dysfunction of human monocyte-macrophage originated THP-1 cells in a PI3K-dependent autophagy pathway. The results indicated that sodium butyrate alleviated the AGEs-induced oxidative stress, decreased the level of reactive oxygen species (ROS), increased malondialdehyde (MDA) and mRNA expression of pro-inflammatory cytokines of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and increased the content of superoxide dismutase (SOD). Sodium butyrate reduced the protein expression of the NLR family, pyrin domain-containing protein 3 (NLRP3) and Caspase-1, and decreased the nucleus expression of nuclear factor-kappaB (NF-κB). Sodium butyrate decreased the expression of light-chain-associated protein B (LC3B) and Beclin-1, and inhibited autophagy. Moreover, sodium butyrate inhibited the activation of the PI3K/Akt pathway in AGEs-induced THP-1 cells. In addition, the metabolomics analysis showed that sodium butyrate could affect the production of phosphatidylcholine, L-glutamic acid, UDP-N-acetylmuraminate, biotinyl-5'-AMP, and other metabolites. In summary, these results revealed that sodium butyrate inhibited autophagy and NLRP3 inflammasome activation by blocking the PI3K/Akt/NF-κB pathway, thereby alleviating oxidative stress, inflammation, and metabolic disorder induced by AGEs.


Ganoderma tsugae Inhibits the SREBP-1/AR Axis Leading to Suppression of Cell Growth and Activation of Apoptosis in Prostate Cancer Cells.

  • Shih-Yin Huang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Recent research suggests that the activation of lipid biosynthesis (lipogenesis) is linked with prostate cancer (PCa) malignancy. Sterol regulatory element-binding protein-1 (SREBP-1) is a key transcriptional regulator controlling lipogenesis. Moreover, androgen receptor (AR) has been well defined to play an important role in lethal PCa aggressiveness from androgen-responsive to castration-resistant status. In this study, we showed that the quality-assured Ganoderma tsugae ethanol extract (GTEE), a Chinese natural and herbal product, significantly inhibited expression of SREBP-1 and its downstream genes associated with lipogenesis in PCa cells. Through inhibiting SREBP-1, GTEE reduced the levels of intracellular fatty acids and lipids in PCa cells. Importantly, GTEE also downregulated the expression of AR and prostate-specific antigen (PSA) in both androgen-responsive and castration-resistant PCa cells. By blocking the SREBP-1/AR axis, GTEE suppressed cell growth and progressive behaviors, as well as activating the caspase-dependent apoptotic pathway in PCa cells. These data provide a new molecular basis of GTEE for the development of a potential therapeutic approach to treat PCa malignancy.


Heme Oxygenase-1 is a Key Molecule Underlying Differential Response of TW-37-Induced Apoptosis in Human Mucoepidermoid Carcinoma Cells.

  • In-Hyoung Yang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

TW-37 is a small-molecule inhibitor of Bcl-2 family proteins, which can induce anti-cancer activities in various types of cancer. In the current study, we investigated the potential molecular mechanism underlying the differential response to TW-37-induced apoptosis in two human mucoepidermoid carcinoma (MEC) cell lines. The differential response and underlying molecular mechanism of human MEC cells to TW-37 was evaluated by trypan blue exclusion assay, western blotting, 4', 6-diamidino-2-phenylindole staining, annexin V/propidium iodide double staining, analysis of the sub-G1 population, human apoptosis array, and measurements of intracellular reactive oxygen species (ROS). TW-37 decreased cell viability and induced apoptosis in YD-15 cells, but not in MC3 cells. Proteome profiling using a human apoptosis array revealed four candidate proteins and of these, heme oxygenase-1 (HO-1) was mainly related to the differential response to TW-37 of YD-15 and MC3 cells. TW-37 also led to a significant increase in intracellular levels of ROS in YD-15 cells, which is associated with apoptosis induction. The ectopic expression of HO-1 recovered YD-15 cells from TW-37-induced apoptosis by reducing intracellular levels of ROS. The expression of HO-1 was reduced through both transcriptional and post-translational modification during TW-37-mediated apoptosis. We conclude that HO-1 is a potential indicator to estimate response to TW37-induced apoptosis in human MEC.


Dicentrine Potentiates TNF-α-Induced Apoptosis and Suppresses Invasion of A549 Lung Adenocarcinoma Cells via Modulation of NF-κB and AP-1 Activation.

  • Chanatip Ooppachai‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Numerous studies have indicated that tumor necrosis factor-alpha (TNF-α) could induce cancer cell survival and metastasis via activation of transcriptional activity of NF-κB and AP-1. Therefore, the inhibition of TNF-α-induced NF-κB and AP-1 activity has been considered in the search for drugs that could effectively treat cancer. Dicentrine, an aporphinic alkaloid, exerts anti-inflammatory and anticancer activities. Therefore, we investigated the effects of dicentrine on TNF-α-induced tumor progression in A549 lung adenocarcinoma cells. Our results demonstrated that dicentrine effectively sensitizes TNF-α-induced apoptosis in A549 cells when compared with dicentrine alone. In addition, dicentrine increases caspase-8, -9, -3, and poly (ADP-ribose) polymerase (PARP) activities by upregulating the death-inducing signaling complex and by inhibiting the expression of antiapoptotic proteins including cIAP2, cFLIP, and Bcl-XL. Furthermore, dicentrine inhibits the TNF-α-induced A549 cells invasion and migration. This inhibition is correlated with the suppression of invasive proteins in the presence of dicentrine. Moreover, dicentrine significantly blockes TNF-α-activated TAK1, p38, JNK, and Akt, leading to reduced levels of the transcriptional activity of NF-κB and AP-1. Taken together, our results suggest that dicentrine could enhance TNF-α-induced A549 cell death by inducing apoptosis and reducing cell invasion due to, at least in part, the suppression of TAK-1, MAPK, Akt, AP-1, and NF-κB signaling pathways.


Stereospecificity of Ginsenoside AD-1 and AD-2 Showed Anticancer Activity via Inducing Mitochondrial Dysfunction and Reactive Oxygen Species Mediate Cell Apoptosis.

  • Xude Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

In this paper, the anti-cancer activity and molecular mechanisms of the isomers of AD-1 and AD-2 (20(R)-AD-1, 20(R)-AD-2, 20(S)-AD-1 and 20(S)-AD-2) were investigated. The results indicated that all of the four compounds obviously suppressed the viability of various cancer cells, and the anti-cancer activity of 20(R)-AD-1 and 20(R)-AD-2 was significantly better than 20(S)-AD-1 and 20(S)-AD-2, especially for gastric cancer cells (BGC-803). Then, the differences in the anti-cancer mechanisms of the isomers were investigated. The data showed that 20(R)-AD-1 and 20(R)-AD-2 induced apoptosis and decreased MMP, up-regulated the expression of cytochrome C in cytosol, transferred Bax to the mitochondria, suppressed oxidative phosphorylation and glycolysis and stimulated reactive oxygen species (ROS) production. Apoptosis can be attenuated by the reactive oxygen species scavenger N-acetylcysteine. However, 20(S)-AD-1 and 20(S)-AD-2 barely exhibited the same results. The results indicated that 20(R)-AD-1 and 20(R)-AD-2 suppressed cellular energy metabolism and caused apoptosis through the mitochondrial pathway, which ROS generation was probably involved in. Above all, the data support the development of 20(R)-AD-1 and 20(R)-AD-2 as potential agents for human gastric carcinoma therapy.


2-Iodo-4'-Methoxychalcone Attenuates Methylglyoxal-Induced Neurotoxicity by Activation of GLP-1 Receptor and Enhancement of Neurotrophic Signal, Antioxidant Defense and Glyoxalase Pathway.

  • Yu-Ting Tseng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Methylglyoxal (MG) acts as a reactive precursor of advanced glycation end products (AGEs). This compound is often connected with pathologies such as diabetes, neurodegenerative processes and diseases of aging. 2-iodo-4'-methoxychalcone (CHA79), a synthetic halogen-containing chalcone derivative, has been reported its anti-diabetic activity. This study aims to investigate the potential protective capability of CHA79 against MG-mediated neurotoxicity in SH-SY5Y cells. Results indicated CHA79 increased viability of cells and attenuated the rate of apoptosis in MG-exposed SH-SY5Y. CHA79 up-regulated expression of anti-apoptotic protein (Bcl-2) and down-regulated apoptotic proteins (Bax, cytochrome c, caspase-3, caspase-9). Moreover, CHA79 significantly up-regulated expression of neurotrophic factors, including glucagon-like peptide-1 receptor (GLP-1R), brain derived neurotrophic factor (BDNF), p75NTR, p-TrkB, p-Akt, p-GK-3β and p-CREB. CHA79 attenuated MG-induced ROS production and enhanced the antioxidant defense including nuclear factor erythroid 2-related factor 2 (Nrf2), HO-1, SOD and GSH. Furthermore, CHA79 attenuated MG-induced reduction of glyoxalase-1 (GLO-1), a vital enzyme on removing AGE precursors. In conclusion, CHA79 is the first novel synthetic chalcone possessing the GLP-1R and GLO-1 activating properties. CHA 79 also exhibits neuroprotective effects against MG toxicity by enhancing neurotrophic signal, antioxidant defense and anti-apoptosis pathway.


Suppressive Effect of Two Cucurbitane-Type Triterpenoids from Momordica charantia on Cutibacterium acnes-Induced Inflammatory Responses in Human THP-1 Monocytic Cell and Mouse Models.

  • Lu-Te Chuang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5β,19-epoxycucurbita-6,23-dien-3β,19,25-triol (Kuguacin R; KR) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1β, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1β-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.


A Novel Derivative of Curcumol, HCL-23, Inhibits the Malignant Phenotype of Triple-Negative Breast Cancer and Induces Apoptosis and HO-1-Dependent Ferroptosis.

  • Peng Zhao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype of breast cancer. Curcumol, as a natural small molecule compound, has potential anti-breast cancer activity. In this study, we chemically synthesized a derivative of curcumol, named HCL-23, by structural modification and explored its effect on and underlying mechanism regarding TNBC progression. MTT and colony formation assays demonstrated that HCL-23 significantly inhibited TNBC cells proliferation. HCL-23 induced G2/M phase cell cycle arrest and repressed the capability of migration, invasion, and adhesion in MDA-MB-231 cells. RNA-seq results identified 990 differentially expressed genes including 366 upregulated and 624 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that these differentially expressed genes were obviously enriched in adhesion, cell migration, apoptosis, and ferroptosis. Furthermore, HCL-23 induced apoptosis via the loss of mitochondrial membrane potential and the activation of the caspase family in TNBC cells. In addition, HCL-23 was verified to trigger ferroptosis through increasing cellular reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation levels. Mechanistically, HCL-23 markedly upregulated the expression of heme oxygenase 1 (HO-1), and the knockdown of HO-1 could attenuate ferroptosis induced by HCL-23. In animal experiments, we found that HCL-23 inhibited tumor growth and weight. Consistently, the upregulation of Cleaved Caspase-3, Cleaved PARP, and HO-1 expression was also observed in tumor tissues treated with HCL-23. In summary, the above results suggest that HCL-23 can promote cell death through activating caspases-mediated apoptosis and HO-1-dependent ferroptosis in TNBC. Therefore, our findings provide a new potential agent against TNBC.


Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway.

  • Xinyan Peng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl₄)-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl₄ exposure. At 24 h, curcumin-attenuated CCl₄ induced elevated serum transaminase activities and histopathological damage in the mouse's liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl₄-induced oxidative stress, characterized by decreased malondialdehyde (MDA) formations, and increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl₄-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01), and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both p < 0.01) in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl₄-induced acute liver injury. Given these outcomes, curcumin could protect against CCl₄-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.


Phenolics Extracted from Jasminum sambac Mitigates Diabetic Cardiomyopathy by Modulating Oxidative Stress, Apoptotic Mediators and the Nfr-2/HO-1 Pathway in Alloxan-Induced Diabetic Rats.

  • Urooj Umar‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic β-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.


A Comparative Study of the Anticancer Activity and PARP-1 Inhibiting Effect of Benzofuran-Pyrazole Scaffold and Its Nano-Sized Particles in Human Breast Cancer Cells.

  • Manal M Anwar‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Breast cancer is considered the most common and deadly cancer among women worldwide. Nanomedicine has become extremely attractive in the field of cancer treatment. Due to the high surface to volume ratio and other unique properties, nanomaterials can be specifically targeted to certain cells and tissues to interact with the living systems. The strategic planning of this study is based on using the nanoprecipitation method to prepare nanoparticles BZP-NPs (3.8-5.7 nm) of the previously prepared benzofuran-pyrazole compound (IV) BZP which showed promising cytotoxic activity. The capacity of BZP and BZP-NPs to suppress the growth of human breast tumor MCF-7 and MDA-MB-231 cells was evaluated using MTT assay. The IC50 doses of BZP and BZP-NPs targeting normal breast cells MCF-12A exceeded those targeting the cancer cells by >1000-fold, demonstrating their reasonable safety profiles in normal cells. Furthermore, cell cycle analysis, apoptosis induction detection, assessment of p53, Bcl-2, caspase-3, and PARP-1 levels of BZP and its nano-sized-BZP-NPs particles were also evaluated. Although the obtained results were in the favor of compound IV in its normal-sized particles, BZP-NPs appeared as a hit compound which showed improved cytotoxicity against the tested human breast cancer cells associated with the induction of pre-G1 apoptosis as well as cell cycle arrest at G2/M phase. The increase in caspase-3 level, upregulation of p53, and downregulation of Bcl-2 protein expression levels confirmed apoptosis. Furthermore, ELISA results exhibited that BZP-NPs produced a more favorable impact as a PARP-1 enzyme inhibitor than the parent BZP.


Standardized Saponin Extract from Baiye No.1 Tea (Camellia sinensis) Flowers Induced S Phase Cell Cycle Arrest and Apoptosis via AKT-MDM2-p53 Signaling Pathway in Ovarian Cancer Cells.

  • Youying Tu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Ovarian cancer is considered to be one of the most serious malignant tumors in women. Natural compounds have been considered as important sources in the search for new anti-cancer agents. Saponins are characteristic components of tea (Camellia sinensis) flower and have various biological activities, including anti-tumor effects. In this study, a high purity standardized saponin extract, namely Baiye No.1 tea flower saponin (BTFS), which contained Floratheasaponin A and Floratheasaponin D, were isolated from tea (Camellia sinensis cv. Baiye 1) flowers by macroporous resin and preparative liquid chromatography. Then, the component and purity were detected by UPLC-Q-TOF/MS/MS. This high purity BTFS inhibited the proliferation of A2780/CP70 cancer cells dose-dependently, which is evidenced by the inhibition of cell viability, reduction of colony formation ability, and suppression of PCNA protein expression. Further research found BTFS induced S phase cell cycle arrest by up-regulating p21 proteins expression and down-regulating Cyclin A2, CDK2, and Cdc25A protein expression. Furthermore, BTFS caused DNA damage and activated the ATM-Chk2 signaling pathway to block cell cycle progression. Moreover, BTFS trigged both extrinsic and intrinsic apoptosis-BTFS up-regulated the expression of death receptor pathway-related proteins DR5, Fas, and FADD and increased the ratio of pro-apoptotic/anti-apoptotic proteins of the Bcl-2 family. BTFS-induced apoptosis seems to be related to the AKT-MDM2-p53 signaling pathway. In summary, our results demonstrate that BTFS has the potential to be used as a nutraceutical for the prevention and treatment of ovarian cancer.


3,5-Diethoxy-3'-Hydroxyresveratrol (DEHR) Ameliorates Liver Fibrosis via Caveolin-1 Activation in Hepatic Stellate Cells and in a Mouse Model of Bile Duct Ligation Injury.

  • Phil Jun Lee‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Hepatic stellate cells (HSCs) are involved in the pathogenesis of liver fibrosis. Resveratrol, 3,5,4'-trihydroxystilbene, is a dietary polyphenol found in natural food products. Here, we evaluated the anti-proliferative effects of a synthetic resveratrol derivative, 3,5-diethoxy-3'-hydroxyresveratrol (DEHR), on HSCs. Flow cytometry and Western blot analyses showed that DEHR induces apoptosis through the upregulation of cleaved caspase-3 and poly (ADP-ribose) polymerase expression and reduction in the level of an anti-apoptotic protein B-cell lymphoma 2 (Bcl2). As caveolin-1 (CAV1), a competitive inhibitor of heme oxygenase 1 (HO-1), is related to apoptotic proteins in hepatic cells, we focused on the role of CAV1 in DEHR-induced apoptosis in HSCs through Western blot analyses. Our results showed that the inhibitory effect of DEHR on cell viability was stronger in HO-1 siRNA-transfected cells but weakened in CAV1 siRNA-transfected cells. Collagen concentration was significantly reduced, whereas CAV1 expression increased after treatment of a bile duct ligation injury-induced liver fibrosis model with DEHR for four weeks. We confirmed that DEHR treatment significantly reduced fibrous hyperplasia around the central veins, using hematoxylin and eosin and Sirius red staining. DEHR ameliorates liver fibrosis in vitro and in vivo, possibly through a mechanism involving CAV1.


High Endogenously Synthesized N-3 Polyunsaturated Fatty Acids in Fat-1 Mice Attenuate High-Fat Diet-Induced Insulin Resistance by Inhibiting NLRP3 Inflammasome Activation via Akt/GSK-3β/TXNIP Pathway.

  • Pan Zhu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

High-fat (HF) diets and low-grade chronic inflammation contribute to the development of insulin resistance and type 2 diabetes (T2D), whereas n-3 polyunsaturated fatty acids (PUFAs), due to their anti-inflammatory effects, protect against insulin resistance. Interleukin (IL)-1β is implicated in insulin resistance, yet how n-3 PUFAs modulate IL-1β secretion and attenuate HF diet-induced insulin resistance remains elusive. In this study, a HF diet activated NLRP3 inflammasome via inducing reactive oxygen species (ROS) generation and promoted IL-1β production primarily from adipose tissue preadipocytes, but not from adipocytes and induced insulin resistance in wild type (WT) mice. Interestingly, endogenous synthesized n-3 polyunsaturated fatty acids (PUFAs) reversed this process in HF diet-fed fat-1 transgenic mice although the HF diet induced higher weight gain in fat-1 mice, compared with the control diet. Mechanistically, palmitic acid (PA), the main saturated fatty acid in an HF diet inactivated AMPK and led to decreased GSK-3β phosphorylation, at least partially through reducing Akt activity, which ultimately blocked the Nrf2/Trx1 antioxidant pathway and induced TXNIP cytoplasm translocation and NLRP3 inflammasome activation, whereas docosahexaenoic acid (DHA), the most abundant n-3 PUFA in fat-1 adipose tissue, reversed this process via inducing Akt activation. Our GSK-3β shRNA knockdown study further revealed that GSK-3β played a pivot role between the upstream AMPK/Akt pathway and downstream Nrf2/Trx1/TXNIP pathway. Given that NLRP3 inflammasome is implicated in the development of most inflammatory diseases, our results suggest the potential of n-3 PUFAs in the prevention or adjuvant treatment of NLRP3 inflammasome-driven diseases.


Tentatively Identified (UPLC/T-TOF-MS/MS) Compounds in the Extract of Saussurea costus Roots Exhibit In Vivo Hepatoprotection via Modulation of HNF-1α, Sirtuin-1, C/ebpα, miRNA-34a and miRNA-223.

  • Heba A El Gizawy‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Saussurea costus is a plant traditionally used for the treatment of several ailments. Our study accomplished the UPLC/T-TOF-MS/MS analysis of a methanol extract of Saussurea costus roots (MESC), in addition to lipoidal matter determination and assessment of its in vivo hepatoprotective activity. In this study, we were able to identify the major metabolites in MESC rather than the previously known isolated compounds, improving our knowledge of its chemical constituents. The flavones apigenin, acacetin, baicalein, luteolin, and diosmetin, and the flavonol aglycones quercetin, kaempferol, isorhamnetin, gossypetin, and myricetin and/or their glycosides and glucuronic derivatives were the major identified compounds. The hepatoprotective activity of MESC was evaluated by measuring catalase activity using UV spectrophotometry, inflammatory cytokines and apoptotic markers using ELISA techniques, and genetic markers using PCR. Paracetamol toxicity caused a significant increase in plasma caspase 2, cytokeratin 18 (CK18), liver tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), miRNA-34a, and miRNA-223, as well as a significant decrease in liver catalase (CAT) activity and in the levels of liver nuclear factor 1α (HNF-1α), sirtuin-1, and C/ebpα. Oral pretreatment with MESC (200 mg/kg) showed a significant decrease in caspase 2, CK18, TNF-α, IL-6 and a significant increase in liver CAT activity. MESC decreased the levels of liver miRNA-34a and miRNA-223 and induced HNF-1α, sirtuin-1, and C/ebpα gene expression. The histological examination showed a significant normalization in rats pretreated with MESC. Our findings showed that Saussurea costus may exert a potent hepatoprotective activity through the modulation of the expression of cellular cytokines, miRNA-34a, and miRNA-223.


Novel Rhodanine Derivative, 5-[4-(4-Fluorophenoxy) phenyl]methylene-3-{4-[3-(4-methylpiperazin-1-yl) propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride, Induces Apoptosis via Mitochondria Dysfunction and Endoplasmic Reticulum Stress in Human Colon Cancer Cells.

  • Hye-Uk Jung‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

We previously reported that 5-[4-(4-fluorophenoxy) phenyl] methylene-3-{4-[3-(4-methylpiperazin-1-yl)propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride (KSK05104) has potent, selective and metabolically stable IKKβ inhibitory activities. However, the apoptosis-inducing of KSK05104 and its underlying mechanism have not yet been elucidated in human colon cancer cells. We show that KSK05104 triggered apoptosis, as indicated by externalization of Annexin V-targeted phosphatidylserine residues in HT-29 and HCT-116 cells. KSK05104 induced the activation of caspase-8, -9, and -3, and the cleavage of poly (ADP ribose) polymerase-1 (PARP-1). KSK05104-induced apoptosis was significantly suppressed by pretreatment with z-VAD-fmk (a broad caspase inhibitor). KSK05104 also induced release of cytochrome c (Cyt c), apoptosis inducing factor (AIF), and endonuclease G (Endo G) by damaging mitochondria, resulting in caspase-dependent and -independent apoptotic cell death. KSK05104 triggered endoplasmic reticulum (ER) stress and changed the intracellular calcium level ([Ca2+]i). Interestingly, treatment with KSK05104 activated not only ER stress marker proteins including inositol-requiring enzyme 1-alpha (IRE-1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), but also μ-calpain, and caspase-12 in a time-dependent manner. KSK05104-induced apoptosis substantially decreased in the presence of BAPTA/AM (an intracellular calcium chelator). Taken together, these results suggest that mitochondrial dysfunction and ER stress contribute to KSK05104-induced apoptosis in human colon cancer cells.


Garcinielliptone G from Garcinia subelliptica Induces Apoptosis in Acute Leukemia Cells.

  • YoungSook Yun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Cytotoxicity and apoptosis-inducing properties of compounds isolated from Garcinia subelliptica leaves were investigated. The hexane-soluble portion of MeOH extracts of G. subelliptica leaves that showed cytotoxic activity was separated to yield seven compounds 1-7. Chemical structure analysis using NMR spectroscopy and mass spectrometry confirmed that compound 1 was canophyllol, and compounds 2-7 were garcinielliptones N, O, J, G, F, and garcinielliptin oxide, respectively. Among them, garcinielliptone G (5) showed growth inhibition by causing apoptosis in THP-1 and Jurkat cells derived from human acute monocytic leukemia and T lymphocyte cells, respectively. Apoptosis induced by garcinielliptone G (5) was demonstrated by the detection of early apoptotic cells with fluorescein-labeled Annexin V and increases in cleaved caspase-3 and cleaved PARP protein levels. However, the addition of caspase inhibitor Z-VAD-FMK did not affect growth arrest or apoptosis induction. These results suggest that garcinielliptone G (5) can induce both caspase-3 activation and caspase-independent apoptosis. Therefore, garcinielliptone G (5) may be a potential candidate for acute leukemia treatment.


Neuroprotective Potency of Tofu Bio-Processed Using Actinomucor elegans against Hypoxic Injury Induced by Cobalt Chloride in PC12 Cells.

  • Liqing Yin‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.


N-Terminomics Strategies for Protease Substrates Profiling.

  • Mubashir Mintoo‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Proteases play a central role in various biochemical pathways catalyzing and regulating key biological events. Proteases catalyze an irreversible post-translational modification called proteolysis by hydrolyzing peptide bonds in proteins. Given the destructive potential of proteolysis, protease activity is tightly regulated. Dysregulation of protease activity has been reported in numerous disease conditions, including cancers, neurodegenerative diseases, inflammatory conditions, cardiovascular diseases, and viral infections. The proteolytic profile of a cell, tissue, or organ is governed by protease activation, activity, and substrate specificity. Thus, identifying protease substrates and proteolytic events under physiological conditions can provide crucial information about how the change in protease regulation can alter the cellular proteolytic landscape. In recent years, mass spectrometry-based techniques called N-terminomics have become instrumental in identifying protease substrates from complex biological mixtures. N-terminomics employs the labeling and enrichment of native and neo-N-termini peptides, generated upon proteolysis followed by mass spectrometry analysis allowing protease substrate profiling directly from biological samples. In this review, we provide a brief overview of N-terminomics techniques, focusing on their strengths, weaknesses, limitations, and providing specific examples where they were successfully employed to identify protease substrates in vivo and under physiological conditions. In addition, we explore the current trends in the protease field and the potential for future developments.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: