2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

MRI-detectable changes in mouse brain structure induced by voluntary exercise.

  • Lindsay S Cahill‎ et al.
  • NeuroImage‎
  • 2015‎

Physical exercise, besides improving cognitive and mental health, is known to cause structural changes in the brain. Understanding the structural changes that occur with exercise as well as the neuroanatomical correlates of a predisposition for exercise is important for understanding human health. This study used high-resolution 3D MR imaging, in combination with deformation-based morphometry, to investigate the macroscopic changes in brain structure that occur in healthy adult mice following four weeks of voluntary exercise. We found that exercise induced changes in multiple brain structures that are involved in motor function and learning and memory including the hippocampus, dentate gyrus, stratum granulosum of the dentate gyrus, cingulate cortex, olivary complex, inferior cerebellar peduncle and regions of the cerebellum. In addition, a number of brain structures, including the hippocampus, striatum and pons, when measured on MRI prior to the start of exercise were highly predictive of subsequent exercise activity. Exercise tended to normalize these pre-existing differences between mice.


Continuous manganese delivery via osmotic pumps for manganese-enhanced mouse MRI does not impair spatial learning but leads to skin ulceration.

  • Dulcie A Vousden‎ et al.
  • NeuroImage‎
  • 2018‎

Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique in rodent neuroimaging studies. Traditionally, Mn2+ is delivered to animals via a systemic injection; however, this can lead to toxic effects at high doses. Recent studies have shown that subcutaneously implanted mini-osmotic pumps can be used to continuously deliver manganese chloride (MnCl2), and that they produce satisfactory contrast while circumventing many of the toxic side effects. However, neither the time-course of signal enhancement nor the effect of continuous Mn2+ delivery on behaviour, particularly learning and memory, have been well-characterized. Here, we investigated the effect of MnCl2 dose and route of administration on a) spatial learning in the Morris Water Maze and b) tissue signal enhancement in the mouse brain. Even as early as 3 days after pump implantation, infusion of 25-50 mg/kg/day MnCl2 via osmotic pump produced signal enhancement as good as or better than that achieved 24 h after a single 50 mg/kg intraperitoneal injection. Neither route of delivery nor MnCl2 dose adversely affected spatial learning and memory on the water maze. However, especially at higher doses, mice receiving MnCl2 via osmotic pumps developed skin ulceration which limited the imaging window. With these findings, we provide recommendations for route and dose of MnCl2 to use for different study designs.


Impact of X/Y genes and sex hormones on mouse neuroanatomy.

  • Dulcie A Vousden‎ et al.
  • NeuroImage‎
  • 2018‎

Biological sex influences brain anatomy across many species. Sex differences in brain anatomy have classically been attributed to differences in sex chromosome complement (XX versus XY) and/or in levels of gonadal sex steroids released from ovaries and testes. Using the four core genotype (4CG) mouse model in which gonadal sex and sex chromosome complement are decoupled, we previously found that sex hormones and chromosomes influence the volume of distinct brain regions. However, recent studies suggest there may be more complex interactions between hormones and chromosomes, and that circulating steroids can compensate for and/or mask underlying chromosomal effects. Moreover, the impact of pre vs post-pubertal sex hormone exposure on this sex hormone/sex chromosome interplay is not well understood. Thus, we used whole brain high-resolution ex-vivo MRI of intact and pre-pubertally gonadectomized 4CG mice to investigate two questions: 1) Do circulating steroids mask sex differences in brain anatomy driven by sex chromosome complement? And 2) What is the contribution of pre- versus post-pubertal hormones to sex-hormone-dependent differences in brain anatomy? We found evidence of both cooperative and compensatory interactions between sex chromosomes and sex hormones in several brain regions, but the interaction effects were of low magnitude. Additionally, most brain regions affected by sex hormones were sensitive to both pre- and post-pubertal hormones. This data provides further insight into the biological origins of sex differences in brain anatomy.


Examining the effect of chronic intranasal oxytocin administration on the neuroanatomy and behavior of three autism-related mouse models.

  • Zsuzsa Lindenmaier‎ et al.
  • NeuroImage‎
  • 2022‎

Although initially showing great potential, oxytocin treatment has encountered a translational hurdle in its promise of treating the social deficits of autism. Some debate surrounds the ability of oxytocin to successfully enter the brain, and therefore modify neuroanatomy. Moreover, given the heterogeneous nature of autism, treatment will only amerliorate symptoms in a subset of patients. Therefore, to determine whether oxytocin changes brain circuitry, and whether it does so variably, depending on genotype, we implemented a large randomized, blinded, placebo-controlled, preclinical study on chronic intranasal oxytocin treatment in three different mouse models related to autism with a focus on using neuroanatomical phenotypes to assess and subset treatment response. Intranasal oxytocin (0.6IU) was administered daily, for 28 days, starting at 5 weeks of age to the 16p11.2 deletion, Shank3 (exon 4-9) knockout, and Fmr1 knockout mouse models. Given the sensitivity of structural magnetic resonance imaging (MRI) to the neurological effects of interventions like drugs, along with many other advantages, the mice underwent in vivo longitudinal and high-resolution ex vivo imaging with MRI. The scans included three in vivo T1weighted, 90 um isotropic resolution scans and a T2-weighted, 3D fast spin echo with 40um isotropic resolution ex vivo scan to assess the changes in neuroanatomy using established automated image registration and deformation based morphometry approaches in response to oxytocin treatment. The behavior of the mice was assessed in multiple domains, including social behaviours and repetitive behaviours, among others. Treatment effect on the neuroanatomy did not reach significance, although the pattern of trending effects was promising. No significant effect of treatment was found on social behavior in any of the strains, although a significant effect of treatment was found in the Fmr1 mouse, with treatment normalizing a grooming deficit. No other treatment effect on behavior was observed that survived multiple comparisons correction. Overall, chronic treatment with oxytocin had limited effects on the three mouse models related to autism, and no promising pattern of response susceptibility emerged.


Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.

  • Jon Pipitone‎ et al.
  • NeuroImage‎
  • 2014‎

Advances in image segmentation of magnetic resonance images (MRI) have demonstrated that multi-atlas approaches improve segmentation over regular atlas-based approaches. These approaches often rely on a large number of manually segmented atlases (e.g. 30-80) that take significant time and expertise to produce. We present an algorithm, MAGeT-Brain (Multiple Automatically Generated Templates), for the automatic segmentation of the hippocampus that minimises the number of atlases needed whilst still achieving similar agreement to multi-atlas approaches. Thus, our method acts as a reliable multi-atlas approach when using special or hard-to-define atlases that are laborious to construct.


Regional brain volume changes following chronic antipsychotic administration are mediated by the dopamine D2 receptor.

  • Elisa Guma‎ et al.
  • NeuroImage‎
  • 2018‎

Neuroanatomical alterations are well established in patients suffering from schizophrenia, however the extent to which these changes are attributable to illness, antipsychotic drugs (APDs), or their interaction is unclear. APDs have been extremely effective for treatment of positive symptoms in major psychotic disorders. Their therapeutic effects are mediated, in part, through blockade of D2-like dopamine (DA) receptors, i.e. the D2, D3 and D4 dopamine receptors. Furthermore, the dependency of neuroanatomical change on DA system function and D2-like receptors has yet to be explored.


Variability of brain anatomy for three common mouse strains.

  • Jan Scholz‎ et al.
  • NeuroImage‎
  • 2016‎

The way in which brain structures express different morphologies is not fully understood. Here we investigate variability in brain anatomy using ex vivo MRI of three common laboratory mouse strains: in two inbred strains (C57BL/6 and 129S6) and one outbred strain (CD-1). We use Generalised Procrustes Analysis (GPA) to estimate modes of anatomical variability. We find three distinct bilateral modes of anatomical surface variability associated with the motor cortex, the anterior somatosensory, the retrosplenial and the entorhinal cortex. The modes of variability that are associated with the motor cortex and anterior somatosensory cortex are predominantly due to genetic, i.e. strain differences. Next, we specifically test if a particular strain is more variable. We find that only the mode associated with motor cortex size has a slightly larger variance in the outbred CD-1 mice compared to the two inbred strains. This suggests that the hypothesis that outbred strains are more variable in general is not true for brain anatomy and the use of outbred CD-1 mice does probably not come at the price of increased variability. Further, we show that the first two principal components distinguish between the three strains with 91% accuracy. This indicates that neuroanatomical strain differences are captured by considerably fewer dimensions than necessary for atlas-based or voxel-wise testing. Statistical comparisons based on shape models could thus be a powerful complement to traditional atlas and voxel-based methods at detecting gene-related brain differences in mice. Finally, we find that the principal components of individual brain structures are correlated, suggesting a tightly coupled network of interdependent developmental trajectories. These results raise the question to what degree neuroanatomical variability is directly genetically determined or the result of experience and epigenetic mechanisms.


Characterizing Inscapes and resting-state in MEG: Effects in typical and atypical development.

  • Marlee M Vandewouw‎ et al.
  • NeuroImage‎
  • 2021‎

Examining the brain at rest is a powerful approach used to understand the intrinsic properties of typical and disordered human brain function, yet task-free paradigms are associated with greater head motion, particularly in young and/or clinical populations such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Inscapes, a non-social and non-verbal movie paradigm, has been introduced to increase attention, thus mitigating head motion, while reducing the task-induced activations found during typical movie watching. Inscapes has not yet been validated for use in magnetoencephalography (MEG), and it has yet to be shown whether its effects are stable in clinical populations. Across typically developing (N = 32) children and adolescents and those with ASD (N = 46) and ADHD (N = 42), we demonstrate that head motion is reduced during Inscapes. Due to the task state evoked by movie paradigms, we also expectedly observed concomitant modulations in local neural activity (oscillatory power) and functional connectivity (phase and envelope coupling) in intrinsic resting-state networks and across the frequency spectra compared to a fixation cross resting-state. Increases in local activity were accompanied by decreases in low-frequency connectivity within and between resting-state networks, primarily the visual network, suggesting that task-state evoked by Inscapes moderates ongoing and spontaneous cortical inhibition that forms the idling intrinsic networks found during a fixation cross resting-state. Importantly, these effects were similar in ASD and ADHD, making Inscapes a well-suited advancement for investigations of resting brain function in young and clinical populations.


Characterization of mice bearing humanized androgen receptor genes (h/mAr) varying in polymorphism length.

  • Zsuzsa Lindenmaier‎ et al.
  • NeuroImage‎
  • 2021‎

The androgen receptor (AR) is known for masculinization of behavior and brain. To better understand the role that AR plays, mice bearing humanized Ar genes with varying lengths of a polymorphic N-terminal glutamine (Q) tract were created (Albertelli et al., 2006). The length of the Q tract is inversely proporitional to AR activity. Biological studies of the Q tract length may also provide a window into potential AR contributions to sex-biases in disease risk. Here we take a multi-pronged approach to characterizing AR signaling effects on brain and behavior in mice using the humanized Ar Q tract model. We first map effects of Q tract length on regional brain anatomy, and consider if these are modified by gonadal sex. We then test the notion that spatial patterns of anatomical variation related to Q tract length could be organized by intrinsic spatiotemporal patterning of AR gene expression in the mouse brain. Finally, we test influences of Q tract length on four behavioral tests.Altering Q tract length led to neuroanatomical differences in a non-linear dosage-dependent fashion. Gene expression analyses indicated that adult neu- roanatomical changes due to Q tract length are only associated with neurode- velopment (as opposed to adulthood). No significant effect of Q tract length was found on the behavior of the three mouse models. These results indicate that AR activity differentially mediates neuroanatomy and behavior, that AR activity alone does not mediate sex differences, and that neurodevelopmen- tal processes are associated with spatial patterns of volume changes due to Q tract length in adulthood. They also indicate that androgen sensitivity in adulthood is not likely to lead to autism-related behaviors or neuroanatomy, although neurodevelopmental processes may play a role earlier. Further study into sex differences, development, other behaviors, and other sex-specific mech- anisms are needed to better understand AR sensitivity, neurodevelopmental disorders, and the sex difference in their prevalence.


A ketogenic diet affects brain volume and metabolome in juvenile mice.

  • Shyamchand Mayengbam‎ et al.
  • NeuroImage‎
  • 2021‎

Ketogenic diet (KD) is a high-fat and low-carbohydrate therapy for medically intractable epilepsy, and its applications in other neurological conditions, including those occurring in children, have been increasingly tested. However, how KD affects childhood neurodevelopment, a highly sensitive and plastic process, is not clear. In this study, we explored structural, metabolic, and functional consequences of a brief treatment of a strict KD (weight ratio of fat to carbohydrate plus protein is approximately 6.3:1) in naive juvenile mice of different inbred strains, using a multidisciplinary approach. Systemic measurements using magnetic resonance imaging revealed that unexpectedly, the volumes of most brain structures in KD-fed mice were about 90% of those in mice of the same strain but fed a standard diet. The reductions in volumes were nonselective, including different regions throughout the brain, the ventricles, and the white matter. The relative volumes of different brain structures were unaltered. Additionally, as KD is a metabolism-based treatment, we performed untargeted metabolomic profiling to explore potential means by which KD affected brain growth and to identify metabolic changes in the brain. We found that brain metabolomic profile was significantly impacted by KD, through both distinct and common pathways in different mouse strains. To explore whether the volumetric and metabolic changes induced by this KD treatment were associated with functional consequences, we recorded spontaneous EEG to measure brain network activity. Results demonstrated limited alterations in EEG patterns in KD-fed animals. In addition, we observed that cortical levels of brain-derived neurotrophic factor (BDNF), a critical molecule in neurodevelopment, did not change in KD-fed animals. Together, these findings indicate that a strict KD could affect volumetric development and metabolic profile of the brain in inbred juvenile mice, while global network activities and BDNF signaling in the brain were mostly preserved. Whether the volumetric and metabolic changes are related to any core functional consequences during neurodevelopment and whether they are also observed in humans need to be further investigated. In addition, our results indicate that certain outcomes of KD are specific to the individual mouse strains tested, suggesting that the physiological profiles of individuals may need to be examined to maximize the clinical benefit of KD.


4D MEMRI atlas of neonatal FVB/N mouse brain development.

  • Kamila U Szulc‎ et al.
  • NeuroImage‎
  • 2015‎

The widespread use of the mouse as a model system to study brain development has created the need for noninvasive neuroimaging methods that can be applied to early postnatal mice. The goal of this study was to optimize in vivo three- (3D) and four-dimensional (4D) manganese (Mn)-enhanced MRI (MEMRI) approaches for acquiring and analyzing data from the developing mouse brain. The combination of custom, stage-dependent holders and self-gated (motion-correcting) 3D MRI sequences enabled the acquisition of high-resolution (100-μm isotropic), motion artifact-free brain images with a high level of contrast due to Mn-enhancement of numerous brain regions and nuclei. We acquired high-quality longitudinal brain images from two groups of FVB/N strain mice, six mice per group, each mouse imaged on alternate odd or even days (6 3D MEMRI images at each day) covering the developmental stages between postnatal days 1 to 11. The effects of Mn-exposure, anesthesia and MRI were assessed, showing small but significant transient effects on body weight and brain volume, which recovered with time and did not result in significant morphological differences when compared to controls. Metrics derived from deformation-based morphometry (DBM) were used for quantitative analysis of changes in volume and position of a number of brain regions. The cerebellum, a brain region undergoing significant changes in size and patterning at early postnatal stages, was analyzed in detail to demonstrate the spatiotemporal characterization made possible by this new atlas of mouse brain development. These results show that MEMRI is a powerful tool for quantitative analysis of mouse brain development, with great potential for in vivo phenotype analysis in mouse models of neurodevelopmental diseases.


Cerebral asymmetries in 12-week-old C57Bl/6J mice measured by magnetic resonance imaging.

  • Shoshana Spring‎ et al.
  • NeuroImage‎
  • 2010‎

Asymmetries of multiple components of the rodent cerebrum have been described at various levels of organization. Yet, despite its ubiquitous nature, many confusing and sometimes contradictory reports regarding structural asymmetries in the rodent brain have been published. There is a need, therefore, for a whole-brain imaging analysis technique for asymmetry studies that is both accurate, reproducible and robust. To this end, a comprehensive three-dimensional examination of differences in brain structure in an inbred mouse strain was undertaken. The goal of this study was thus to use high-resolution magnetic resonance imaging to assess structural asymmetries in the adult C57Bl/6J mouse brain. Fixed brain T2-weighted images of 20 male C57Bl/6J mice were acquired on a 7T scanner at 32 microm isotropic resolution. We used voxel-based analyses to examine structural asymmetries throughout the whole mouse brain. The striatum, medial-posterior regions of the thalamus, and motor, sensorimotor, and visual cortex were found to be asymmetrical. The most significant asymmetry was found in the hippocampus and, specifically, the dentate gyrus. In each case, the left region was larger than the right. No other regions of the mouse brain showed structural asymmetry. The results in the dentate gyrus were confirmed using stereology, revealing a correlation of r=0.61 between magnetic resonance and stereological measures. Hippocampal, along with cortical asymmetry, has been discussed repeatedly in the literature, yet a clear pattern of directionality, until this point, has not been described. The findings of asymmetry in the striatum and absence of asymmetry in the rest of the brain are novel and show the advantage of using the whole-brain three-dimensional techniques developed herein for assessing asymmetry.


Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease.

  • Jason P Lerch‎ et al.
  • NeuroImage‎
  • 2008‎

A recent study found differences in localised regions of the cortex between the YAC128 mouse model of Huntington's Disease (HD) and wild-type mice. There are, however, few tools to automatically examine shape differences in the cortices of mice. This paper describes an algorithm for automatically measuring cortical thickness across the entire cortex from MRI of fixed mouse brain specimens. An analysis of the variance of the method showed that, on average, a 50 microm (0.05 mm) localised difference in cortical thickness can be measured using MR scans. Applying these methods to 8-month-old YAC128 mouse model mice representing an early stage of HD, we found an increase in cortical thickness in the sensorimotor cortex, and also revealed regions wherein decreasing striatal volume correlated with increasing cortical thickness, indicating a potential compensatory response.


Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy.

  • Boris C Bernhardt‎ et al.
  • NeuroImage‎
  • 2008‎

Temporal lobe epilepsy (TLE) is considered primarily a limbic disorder. Our purpose was to map limbic network organization in TLE and to statistically relate it to neocortical atrophy. We performed MRI-based cortical thickness analysis in 110 TLE patients (including 68 patients with hippocampal atrophy and 42 patients with normal hippocampal volume) and 46 healthy controls. Limbic connectivity was statistically inferred by correlating mean thickness of the entorhinal cortex (EC) with thickness at each vertex across the entire neocortex. The EC was chosen as seed region since it is the link between the neocortex and the hippocampal formation. Patients showed cortical thinning mainly in temporal and fronto-central neocortices, with a prevalence of atrophy in up to 35%. In controls, EC networks corresponded closely to known anatomical connections. In TLE the pattern of correlations was similar to controls, suggesting that pathological processes in the EC affect the same networks that co-vary with the EC in the healthy brain. Nevertheless, we found decreases in correlations mainly in the temporal lobe and increases mainly in orbitofrontal cortices. Although our analysis indicated alterations in the temporo-limbic network in TLE, there was no association between mesiotemporal connectivity and atrophy across the entire cortical surface. This divergence underlines the complexity of the pathophysiological mechanisms leading to neocortical atrophy in TLE.


Sexual dimorphism revealed in the structure of the mouse brain using three-dimensional magnetic resonance imaging.

  • Shoshana Spring‎ et al.
  • NeuroImage‎
  • 2007‎

A large variety of sexual dimorphisms have been described in the brains of many vertebrate species, including humans. Naturally occurring sexual dimorphism has been implicated in the risk, progression and recovery from numerous neurological disorders, including head injury, multiple sclerosis and stroke. Genetically altered mice are a key tool in the study of structure-function relationships in the mammalian central nervous system and serve as models for human neuropsychiatric and neurological disorders. However, there are a limited number of quantitative three-dimensional analyses of the adult mouse brain structures. In order to address limitations in our knowledge of anatomical differences, a comprehensive study was undertaken using full 3D magnetic resonance imaging (MRI) to examine sexual dimorphisms in the C57BL/6J whole mouse brain. An expected difference in overall brain size between the sexes was found, where male brains were 2.5% larger in volume than female brains. Beyond the overall brain size differences in the sexes, the following significantly different regions were found: males were larger in the thalamus, primary motor cortex and posterior hippocampus, while females were larger in posterior hypothalamic area, entorhinal cortex and anterior hippocampus. Using high-definition 3D MRI on a normal inbred mouse strain, we have mapped in detail many sex-associated statistically significant differences in brain structures.


Longitudinal MEMRI analysis of brain phenotypes in a mouse model of Niemann-Pick Type C disease.

  • Harikrishna Rallapalli‎ et al.
  • NeuroImage‎
  • 2020‎

Niemann-Pick Type C (NPC) is a rare genetic disorder characterized by progressive cell death in various tissues, particularly in the cerebellar Purkinje cells, with no known cure. Mouse models for human NPC have been generated and characterized histologically, behaviorally, and using longitudinal magnetic resonance imaging (MRI). Previous imaging studies revealed significant brain volume differences between mutant and wild-type animals, but stopped short of making volumetric comparisons of the cerebellar sub-regions. In this study, we present longitudinal manganese-enhanced MRI (MEMRI) data from cohorts of wild-type, heterozygote carrier, and homozygote mutant NPC mice, as well as deformation-based morphometry (DBM) driven brain volume comparisons across genotypes, including the cerebellar cortex, white matter, and nuclei. We also present the first comparisons of MEMRI signal intensities, reflecting brain and cerebellum sub-regional Mn2+-uptake over time and across genotypes.


Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis.

  • Joanes Grandjean‎ et al.
  • NeuroImage‎
  • 2020‎

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.


Sex-biased trajectories of amygdalo-hippocampal morphology change over human development.

  • Ari M Fish‎ et al.
  • NeuroImage‎
  • 2020‎

The amygdala and hippocampus are two adjacent allocortical structures implicated in sex-biased and developmentally-emergent psychopathology. However, the spatiotemporal dynamics of amygdalo-hippocampal development remain poorly understood in healthy humans. The current study defined trajectories of volume and shape change for the amygdala and hippocampus by applying a multi-atlas segmentation pipeline (MAGeT-Brain) and semi-parametric mixed-effects spline modeling to 1,529 longitudinally-acquired structural MRI brain scans from a large, single-center cohort of 792 youth (403 males, 389 females) between the ages of 5 and 25 years old. We found that amygdala and hippocampus volumes both follow curvilinear and sexually dimorphic growth trajectories. These sex-biases were particularly striking in the amygdala: males showed a significantly later and slower adolescent deceleration in volume expansion (at age 20 years) than females (age 13 years). Shape analysis localized significant hot-spots of sex-biased anatomical development in sub-regional territories overlying rostral and caudal extremes of the CA1/2 in the hippocampus, and the centromedial nuclear group of the amygdala. In both sexes, principal components analysis revealed close integration of amygdala and hippocampus shape change along two main topographically-organized axes - low vs. high areal expansion, and early vs. late growth deceleration. These results (i) bring greater resolution to our spatiotemporal understanding of amygdalo-hippocampal development in healthy males and females, and (ii) uncover focal sex-differences in the structural maturation of the brain components that may contribute to differences in behavior and psychopathology that emerge during adolescence.


High resolution whole brain imaging of anatomical variation in XO, XX, and XY mice.

  • Armin Raznahan‎ et al.
  • NeuroImage‎
  • 2013‎

The capacity of sex to modify behavior in health and illness may stem from biological differences between males and females. One such difference--fundamental to the biological definition of sex--is inequality of X chromosome dosage. Studies of Turner Syndrome (TS) suggest that X-monosomy profoundly alters mammalian brain development. However, use of TS as a model for X chromosome haploinsufficiency is complicated by karyotypic mosaicism, background genetic heterogeneity and ovarian dysgenesis. Therefore, to better isolate X chromosome effects on brain development and identify how these overlap with normative sex differences, we used whole-brain structural imaging to study X-monosomic mice (free of mosaicism and ovarian dysgenesis) alongside their karyotypical normal male and female littermates. We demonstrate that murine X-monosomy (XO) causes (i) accentuation of XX vs XY differences in a set of sexually dimorphic structures including classical foci of sex-hormone action, such as the bed nucleus of the stria terminal and medial amygdala, (ii) parietal and striatal abnormalities that recapitulate those reported TS, and (iii) abnormal development of brain systems relevant for domains of altered cognition and emotion in both murine and human X-monosomy. Our findings suggest an unexpected role for X-linked genes in shaping sexually dimorphic brain development, and an evolutionarily conserved influence of X-linked genes on both cortical and subcortical development in mammals. Furthermore, our murine findings highlight the bed nucleus of the stria terminalis and periaqueductal gray matter as novel neuroanatomical candidates for closer study in TS. Integration of these data with existing genomic knowledge generates a set of novel, testable hypotheses regarding candidate mechanisms for each observed pattern of anatomical variation across XO, XX and XY groups.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: