Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 687 papers

Protracted hippocampal development is associated with age-related improvements in memory during early childhood.

  • Tracy Riggins‎ et al.
  • NeuroImage‎
  • 2018‎

The hippocampus is a structure that is critical for memory. Previous studies have shown that age-related differences in specialization along the longitudinal axis of this structure (i.e., subregions) and within its internal circuitry (i.e., subfields) relate to age-related improvements in memory in school-age children and adults. However, the influence of age on hippocampal development and its relations with memory ability earlier in life remains under-investigated. This study examined effects of age and sex on hippocampal subregion (i.e., head, body, tail) and subfield (i.e., subiculum, CA1, CA2-4/DG) volumes, and their relations with memory, using a large sample of 4- to 8-year-old children. Results examining hippocampal subregions suggest influences of both age and sex on the hippocampal head during early childhood. Results examining subfields within hippocampal head suggest these age effects may arise from CA1, whereas sex differences may arise from subiculum and CA2-4/DG. Memory ability was not associated with hippocampal subregion volume but was associated with subfield volume. Specifically, within the hippocampal head, relations between memory and CA1 were moderated by age; in younger children bigger was better, whereas in older children smaller was superior. Within the hippocampal body, smaller CA1 and larger CA2-4/DG contributed to better memory performance across all ages. Together, these results shed light on hippocampal development during early childhood and support claims that the prolonged developmental trajectory of the hippocampus contributes to memory development early in life.


QSI and DTI of excised brains of the myelin-deficient rat.

  • Amnon Bar-Shir‎ et al.
  • NeuroImage‎
  • 2009‎

High b-value q-space diffusion imaging (QSI) and conventional DTI methodologies were used to study the MRI diffusion characteristics of excised brains of 21-day-old myelin-deficient (md) rats and their age-matched controls. Three different indices were calculated from the QSI data, i.e., Displacement, Probability and Kurtosis, for the purpose of evaluating the effect of the myelin sheaths on the MR diffusion characteristics in white matter (WM) ROIs of the md versus control brains. The examined WM ROIs were the corpus callosum, the external capsule, and the internal capsule. In all examined WM ROIs, significant differences were observed between the md and control brains for all QSI indices. These differences reveal that myelin sheaths surrounding the axons in WM ROIs mostly affect the component exhibiting restricted diffusion, which is manifested by low mean displacement values and high probability and kurtosis values. Such differences were found to be more pronounced in long diffusion times, i.e., Delta=200 ms. Conventional DTI performed with relatively low b-values (b<1500 s/mm2) was also used to study md versus control brains. Interestingly, the fractional anisotropy (FA) index, which was calculated from DTI data, did not reveal any significant difference between the groups in the examined WM ROIs. However, some distinctions were revealed by the three eigenvalues (lambda1, lambda2, and lambda3) obtained from the tensor analysis. These findings were supported by Voxel-based analysis using SPM. Finally, MRI-guided histology showed very good agreement between myelin-stained regions and regions with highly restricted diffusion detected by QSI.


The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG.

  • Martin Völker‎ et al.
  • NeuroImage‎
  • 2018‎

Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies.


Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems.

  • Genevieve Albouy‎ et al.
  • NeuroImage‎
  • 2015‎

It is now accepted that hippocampal- and striatal-dependent memory systems do not act independently, but rather interact during both memory acquisition and consolidation. However, the respective functional roles of the hippocampus and the striatum in these processes remain unknown. Here, functional magnetic resonance imaging (fMRI) was used in a daytime sleep/wake protocol to investigate this knowledge gap. Using a protocol developed earlier in our lab (Albouy et al., 2013a), the manipulation of an explicit sequential finger-tapping task, allowed us to isolate allocentric (spatial) and egocentric (motor) representations of the sequence, which were supported by distinct hippocampo- and striato-cortical networks, respectively. Importantly, a sleep-dependent performance enhancement emerged for the hippocampal-dependent memory trace, whereas performance was maintained for the striatal-dependent memory trace, irrespective of the sleep condition. Regression analyses indicated that the interaction between these two systems influenced subsequent performance improvements. While striatal activity was negatively correlated with performance enhancement after both sleep and wakefulness in the allocentric representation, hippocampal activity was positively related to performance improvement for the egocentric representation, but only if sleep was allowed after training. Our results provide the first direct evidence of a functional dissociation in consolidation processes whereby memory stabilization seems supported by the striatum in a time-dependent manner whereas memory enhancement seems linked to hippocampal activity and sleep-dependent processes.


Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.

  • Erich Seifritz‎ et al.
  • NeuroImage‎
  • 2006‎

Auditory neuroscience has not tapped fMRI's full potential because of acoustic scanner noise emitted by the gradient switches of conventional echoplanar fMRI sequences. The scanner noise is pulsed, and auditory cortex is particularly sensitive to pulsed sounds. Current fMRI approaches to avoid stimulus-noise interactions are temporally inefficient. Since the sustained BOLD response to pulsed sounds decreases with repetition rate and becomes minimal with unpulsed sounds, we developed an fMRI sequence emitting continuous rather than pulsed gradient sound by implementing a novel quasi-continuous gradient switch pattern. Compared to conventional fMRI, continuous-sound fMRI reduced auditory cortex BOLD baseline and increased BOLD amplitude with graded sound stimuli, short sound events, and sounds as complex as orchestra music with preserved temporal resolution. Response in subcortical auditory nuclei was enhanced, but not the response to light in visual cortex. Finally, tonotopic mapping using continuous-sound fMRI demonstrates that enhanced functional signal-to-noise in BOLD response translates into improved spatial separability of specific sound representations.


Dynamics of electrocorticographic (ECoG) activity in human temporal and frontal cortical areas during music listening.

  • Cristhian Potes‎ et al.
  • NeuroImage‎
  • 2012‎

Previous studies demonstrated that brain signals encode information about specific features of simple auditory stimuli or of general aspects of natural auditory stimuli. How brain signals represent the time course of specific features in natural auditory stimuli is not well understood. In this study, we show in eight human subjects that signals recorded from the surface of the brain (electrocorticography (ECoG)) encode information about the sound intensity of music. ECoG activity in the high gamma band recorded from the posterior part of the superior temporal gyrus as well as from an isolated area in the precentral gyrus was observed to be highly correlated with the sound intensity of music. These results not only confirm the role of auditory cortices in auditory processing but also point to an important role of premotor and motor cortices. They also encourage the use of ECoG activity to study more complex acoustic features of simple or natural auditory stimuli.


Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification.

  • Henri A Vrooman‎ et al.
  • NeuroImage‎
  • 2007‎

Conventional k-Nearest-Neighbor (kNN) classification, which has been successfully applied to classify brain tissue in MR data, requires training on manually labeled subjects. This manual labeling is a laborious and time-consuming procedure. In this work, a new fully automated brain tissue classification procedure is presented, in which kNN training is automated. This is achieved by non-rigidly registering the MR data with a tissue probability atlas to automatically select training samples, followed by a post-processing step to keep the most reliable samples. The accuracy of the new method was compared to rigid registration-based training and to conventional kNN-based segmentation using training on manually labeled subjects for segmenting gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in 12 data sets. Furthermore, for all classification methods, the performance was assessed when varying the free parameters. Finally, the robustness of the fully automated procedure was evaluated on 59 subjects. The automated training method using non-rigid registration with a tissue probability atlas was significantly more accurate than rigid registration. For both automated training using non-rigid registration and for the manually trained kNN classifier, the difference with the manual labeling by observers was not significantly larger than inter-observer variability for all tissue types. From the robustness study, it was clear that, given an appropriate brain atlas and optimal parameters, our new fully automated, non-rigid registration-based method gives accurate and robust segmentation results. A similarity index was used for comparison with manually trained kNN. The similarity indices were 0.93, 0.92 and 0.92, for CSF, GM and WM, respectively. It can be concluded that our fully automated method using non-rigid registration may replace manual segmentation, and thus that automated brain tissue segmentation without laborious manual training is feasible.


The effect of cognitive challenge on delay discounting.

  • Gabriel J Aranovich‎ et al.
  • NeuroImage‎
  • 2016‎

Recent findings suggest that the dorsolateral prefrontal cortex (DLPFC), a region consistently associated with impulse control, is vulnerable to transient suppression of its activity and attendant functions by excessive stress and/or cognitive demand. Using functional magnetic resonance imaging, we show that a capacity-exceeding cognitive challenge induced decreased DLPFC activity and correlated increases in the preference for immediately available rewards. Consistent with growing evidence of a link between working memory capacity and delay discounting, the effect was inversely proportional to baseline performance on a working memory task. Subjects who performed well on the working memory task had unchanged, or even decreased, delay discounting rates, suggesting that working memory ability may protect cognitive control from cognitive challenge.


Regional cerebral blood flow in Parkinson's disease with and without dementia.

  • M J Firbank‎ et al.
  • NeuroImage‎
  • 2003‎

Tc99 HMPAO SPECT and T1 weighted 3D MRI scans were acquired in cognitively intact subjects with Parkinson's disease (PD) (n = 31), and in PD subjects with dementia (PDD) (n = 34), healthy controls (n = 37), those with Alzheimer's disease (AD) (n = 32), and those with dementia with Lewy bodies (DLB) (n = 15). We used SPM99 to look for regions which showed a reduction in perfusion on SPECT not related to associated structural brain changes assessed by a MRI scan. The precuneus and inferior lateral parietal regions showed a perfusion deficit in Parkinson's disease with dementia, similar to the pattern observed in DLB. In comparison, AD showed a perfusion deficit in the midline parietal region, in a more anterior and inferior location than in PDD, involving the posterior cingulate as well as the precuneus. The perfusion deficits in PDD are similar those in DLB, and in a location associated with visual processing, and may be associated with the visuospatial perception deficits which are present in persons with DLB and PDD.


Using a multimodal near-infrared spectroscopy and MRI to quantify gray matter metabolic rate for oxygen: A hypothermia validation study.

  • Mada Hashem‎ et al.
  • NeuroImage‎
  • 2020‎

Non-invasive quantitative imaging of cerebral oxygen metabolism (CMRO2) in small animal models is crucial to understand the role of oxidative metabolism in healthy and diseased brains. In this study, we developed a multimodal method combining near-infrared spectroscopy (NIRS) and MRI to non-invasively study oxygen delivery and consumption in the cortex of mouse and rat models. The term CASNIRS is proposed to the technique that measures CMRO2 with ASL and NIRS. To determine the reliability of this method, CMRO2 values were compared with reported values measured with other techniques. Also, the sensitivity of the CASNIRS technique to detect changes in CMRO2 in the cortex of the animals was assessed by applying a reduction in core temperature, which is known to reduce CMRO2. Cerebral blood flow (CBF) and CMRO2 were measured in five mice and five rats at a core temperature of 37 °C followed by another measurement at 33 °C. CMRO2 was 7.8 ± 1.8 and 3.7 ± 0.9 (ml/100 g/min, mean ± SD) in mice and rats respectively. These values are in good agreement with reported values measured by 15O PET, 17O NMR, and BOLD fMRI. In hypothermia, we detected a significant decrease of 37% and 32% in CMRO2 in the cortex of mice and rats, respectively. Q10 was calculated to be 3.2 in mice and 2.7 in rats. In this study we showed that it is possible to assess absolute values of metabolic correlates such as CMRO2, CBF and oxygen extraction fraction (OEF) noninvasively in living brain of mice and rats by combining NIRS with MRI. This will open new possibilities for studying brain metabolism in patients as well as the many mouse/rat models of brain disorders.


Localization of the magnetic equivalent of the ERN and induced oscillatory brain activity.

  • Julian Keil‎ et al.
  • NeuroImage‎
  • 2010‎

It has been found in numerous electroencephalographic (EEG) studies that a negative potential arises following an erroneous response (so-called Error-Related Negativity, ERN). This typical component of the EEG has, however, proven more difficult to identify when transferring analogous paradigms to magnetoencephalography (MEG). The aim of this study was to devise and apply a paradigm to elicit erroneous responses and using MEG to measure both the error-related evoked brain activity (mERN) as well as accompanying induced oscillatory activity. Results clearly demonstrate that it is possible to measure the mERN and to identify cortical sources associated with it. Using distributed source modeling, it is possible to identify the mERN in source space and corroborate EEG findings, with the mERN generated in the anterior cingulate cortex (ACC). This supports notions regarding the role of the ACC in error monitoring and cognitive control of motor behavior. Furthermore, changes in induced oscillatory activity were observed in the theta and beta bands. This extends previous studies, which show that evoked theta activity could underlie the generation of the ERN.


Whole-slice mapping of GABA and GABA+ at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout.

  • Philipp Moser‎ et al.
  • NeuroImage‎
  • 2019‎

An adiabatic MEscher-GArwood (MEGA)-editing scheme, using asymmetric hyperbolic secant editing pulses, was developed and implemented in a B1+-insensitive, 1D-semiLASER (Localization by Adiabatic SElective Refocusing) MR spectroscopic imaging (MRSI) sequence for the non-invasive mapping of γ-aminobutyric acid (GABA) over a whole brain slice. Our approach exploits the advantages of edited-MRSI at 7T while tackling challenges that arise with ultra-high-field-scans. Spatial-spectral encoding, using density-weighted, concentric circle echo planar trajectory readout, enabled substantial MRSI acceleration and an improved point-spread-function, thereby reducing extracranial lipid signals. Subject motion and scanner instabilities were corrected in real-time using volumetric navigators optimized for 7T, in combination with selective reacquisition of corrupted data to ensure robust subtraction-based MEGA-editing. Simulations and phantom measurements of the adiabatic MEGA-editing scheme demonstrated stable editing efficiency even in the presence of ±0.15 ppm editing frequency offsets and B1+ variations of up to ±30% (as typically encountered in vivo at 7T), in contrast to conventional Gaussian editing pulses. Volunteer measurements were performed with and without global inversion recovery (IR) to study regional GABA levels and their underlying, co-edited, macromolecular (MM) signals at 2.99 ppm. High-quality in vivo spectra allowed mapping of pure GABA and MM-contaminated GABA+ (GABA + MM) along with Glx (Glu + Gln), with high-resolution (eff. voxel size: 1.4 cm3) and whole-slice coverage in 24 min scan time. Metabolic ratio maps of GABA/tNAA, GABA+/tNAA, and Glx/tNAA were correlated linearly with the gray matter fraction of each voxel. A 2.15-fold increase in gray matter to white matter contrast was observed for GABA when enabling IR, which we attribute to the higher abundance of macromolecules at 2.99 ppm in the white matter than in the gray matter. In conclusion, adiabatic MEGA-editing with 1D-semiLASER selection is as a promising approach for edited-MRSI at 7T. Our sequence capitalizes on the benefits of ultra-high-field MRSI while successfully mitigating the challenges related to B0/B1+ inhomogeneities, prolonged scan times, and motion/scanner instability artifacts. Robust and accurate 2D mapping has been shown for the neurotransmitters GABA and Glx.


Decoding covert spatial attention using electrocorticographic (ECoG) signals in humans.

  • Aysegul Gunduz‎ et al.
  • NeuroImage‎
  • 2012‎

This study shows that electrocorticographic (ECoG) signals recorded from the surface of the brain provide detailed information about shifting of visual attention and its directional orientation in humans. ECoG allows for the identification of the cortical areas and time periods that hold the most information about covert attentional shifts. Our results suggest a transient distributed fronto-parietal mechanism for orienting of attention that is represented by different physiological processes. This neural mechanism encodes not only whether or not a subject shifts their attention to a location, but also the locus of attention. This work contributes to our understanding of the electrophysiological representation of attention in humans. It may also eventually lead to brain-computer interfaces (BCIs) that optimize user interaction with their surroundings or that allow people to communicate choices simply by shifting attention to them.


Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI.

  • Jean C Augustinack‎ et al.
  • NeuroImage‎
  • 2013‎

The perirhinal cortex (Brodmann's area 35) is a multimodal area that is important for normal memory function. Specifically, perirhinal cortex is involved in the detection of novel objects and manifests neurofibrillary tangles in Alzheimer's disease very early in disease progression. We scanned ex vivo brain hemispheres at standard resolution (1 mm × 1 mm × 1 mm) to construct pial/white matter surfaces in FreeSurfer and scanned again at high resolution (120 μm × 120 μm × 120 μm) to determine cortical architectural boundaries. After labeling perirhinal area 35 in the high resolution images, we mapped the high resolution labels to the surface models to localize area 35 in fourteen cases. We validated the area boundaries determined using histological Nissl staining. To test the accuracy of the probabilistic mapping, we measured the Hausdorff distance between the predicted and true labels and found that the median Hausdorff distance was 4.0mm for the left hemispheres (n=7) and 3.2mm for the right hemispheres (n=7) across subjects. To show the utility of perirhinal localization, we mapped our labels to a subset of the Alzheimer's Disease Neuroimaging Initiative dataset and found decreased cortical thickness measures in mild cognitive impairment and Alzheimer's disease compared to controls in the predicted perirhinal area 35. Our ex vivo probabilistic mapping of the perirhinal cortex provides histologically validated, automated and accurate labeling of architectonic regions in the medial temporal lobe, and facilitates the analysis of atrophic changes in a large dataset for earlier detection and diagnosis.


Acute and chronic stage adaptations of vascular architecture and cerebral blood flow in a mouse model of TBI.

  • Joe Steinman‎ et al.
  • NeuroImage‎
  • 2019‎

The 3D organization of cerebral blood vessels determines the overall capacity of the cerebral circulation to meet the metabolic requirements of the brain. Imaging methodologies which combine 3D microvascular structural imaging with blood flow quantification can shed light on the relationship between vascular structure and function, in health and disease. This study applies Arterial Spin Labeling (ASL) MRI with a hypercapnic challenge and ex vivo Serial Two-Photon Tomography (STPT) to examine the relationship between blood flow and vascular architecture following traumatic brain injury (TBI) in a mouse. Mice were exposed to a controlled cortical impact TBI and allowed to recover for either 1 day or 4 weeks. At each time point, ASL MRI was performed to quantify cerebral perfusion and the brain vasculature was imaged in 3D with STPT. Registration of ASL to STPT enabled flow changes to be related to the underlying microvascular structure in each ASL voxel. Hypoperfusion under rest and hypercapnia was observed both 1 day and 4 weeks post-TBI. Vessel density and vascular volume were reduced 1 day post-TBI, recovering by 4 weeks; however, the reorganized vasculature at the latter time point possessed an abnormal radial pattern. Our findings demonstrate functionally significant long-term changes in the vascular architecture following injury and illustrate why metrics beyond traditional measures of vessel density are required to understand the impact of vascular structure on function.


Reality TV and vicarious embarrassment: an fMRI study.

  • Martin Melchers‎ et al.
  • NeuroImage‎
  • 2015‎

Vicarious embarrassment (VE) is an emotion triggered by the observation of others' pratfalls or social norm violations. Several explanatory approaches have been suggested to explain the source of this phenomenon, including perspective taking abilities or ingroup identification. Knowledge about its biological bases, however, is scarce. To gain a better understanding, the present study investigated neural activation patterns in response to video clips from reality TV shows. Reality TV is well known for presenting social norm violations, flaws and pratfalls of its protagonists in real life situations thereby qualifying as an ecological valid trigger for VE.


Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex.

  • Elisabeth Rounis‎ et al.
  • NeuroImage‎
  • 2005‎

Repetitive transcranial magnetic stimulation (rTMS) to the human primary motor cortex (M1) causes bidirectional changes in corticospinal excitability depending on the stimulation frequency used. We used functional brain imaging to compare the effects of 5 Hz and 1 Hz-rTMS on local and inter-regional connectivity within the motor system. Regional cerebral blood flow (rCBF) was measured as a marker of synaptic activity at rest and during freely selected finger movements. We hypothesized that increased cortical excitability induced by 5 Hz-rTMS over M1 has an opposite effect on the synaptic activity and the connectivity of the motor network from the decreased cortical excitability induced by 1 Hz-rTMS. rTMS at both frequencies induced similar changes in rCBF at the site of stimulation and within areas of the motor network engaged by the task. The two frequencies showed different effects on movement-related coupling between motor areas. Connectivity analyses also indicated a differential effect of 5 and 1 Hz-rTMS on motor network connectivity, suggesting a role for an inferomedial portion of left M1 and left dorsal premotor cortex in maintaining performance. These results suggest that rapid reorganization of the motor system occurs to maintain task performance during periods of altered cortical excitability. This reorganization differs according to the modulation of excitability which is a function of rTMS frequency. This study extends the work of Lee et al. (Lee, L., Siebner, H.R., Rowe, J.B., Rizzo, V. Rothwell, J.C. Frackowiak, R.S. Friston, K.J., 2003. Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J. Neurosci. 23, 5308-5318.) by providing evidence that the pattern of acute reorganization in the motor network following rTMS depends on the direction of conditioning.


Motor-cortical beta oscillations are modulated by correctness of observed action.

  • Thomas Koelewijn‎ et al.
  • NeuroImage‎
  • 2008‎

Recent research has demonstrated that cortical motor areas are engaged when observing motor actions of others. However, little is known about the possible contribution of the motor system for evaluating the correctness of others' actions. To address this question we designed an MEG experiment in which subjects were executing and observing motor actions with and without errors. In the execution task subjects were asked to make speeded button presses according to instruction cues. During the observation task, they viewed pictures of an actor's hand making button presses which were correct or incorrect according to the cues. Time-frequency representations of the MEG data demonstrated a depression in oscillatory activity in the beta band activity (15-35 Hz) during execution followed by a beta rebound that was stronger for incorrect compared to correct executions. During the observation task, a similar time-course of the beta activity was identified and importantly the modulations were stronger for the observation of incorrect than correct actions. Sources accounting for the difference in beta activity between correct and incorrect actions were localized using a beamforming technique. Both for the execution and observation conditions sources were identified to the dorsal motor areas comprising both primary and pre-motor cortex. Our findings demonstrate that not only is cortical motor activity modulated by action observation, but the modulation increases when the observed action is erroneous. This suggests that the motor system is engaged in evaluating the correctness of the actions of others.


Axon diameter and axonal transport: In vivo and in vitro effects of androgens.

  • M Pesaresi‎ et al.
  • NeuroImage‎
  • 2015‎

Testosterone is a sex hormone involved in brain maturation via multiple molecular mechanisms. Previous human studies described age-related changes in the overall volume and structural properties of white matter during male puberty. Based on this work, we have proposed that testosterone may induce a radial growth of the axon and, possibly, modulate axonal transport. In order to determine whether this is the case we have used two different experimental approaches. With electron microscopy, we have evaluated sex differences in the structural properties of axons in the corpus callosum (splenium) of young rats, and tested consequences of castration carried out after weaning. Then we examined in vitro the effect of the non-aromatizable androgen Mibolerone on the structure and bidirectional transport of wheat-germ agglutinin vesicles in the axons of cultured sympathetic neurons. With electron microscopy, we found robust sex differences in axonal diameter (males>females) and g ratio (males>females). Removal of endogenous testosterone by castration was associated with lower axon diameter and lower g ratio in castrated (vs. intact) males. In vitro, Mibolerone influenced the axonal transport in a time- and dose-dependent manner, and increased the axon caliber as compared with vehicle-treated neurons. These findings are consistent with the role of testosterone in shaping the axon by regulating its radial growth, as predicted by the initial human studies.


Magnetoencephalographic evidence for the modulation of cortical swallowing processing by transcranial direct current stimulation.

  • Sonja Suntrup‎ et al.
  • NeuroImage‎
  • 2013‎

Swallowing is a complex neuromuscular task that is processed within multiple regions of the human brain. Rehabilitative treatment options for dysphagia due to neurological diseases are limited. Because the potential for adaptive cortical changes in compensation of disturbed swallowing is recognized, neuromodulation techniques like transcranial direct current stimulation (tDCS) are currently considered as a treatment option. Here we evaluate the effect of tDCS on cortical swallowing network activity and behavior. In a double-blind crossover study, anodal tDCS (20 min, 1 mA) or sham stimulation was administered over the left or right swallowing motor cortex in 21 healthy subjects in separate sessions. Cortical activation was measured using magnetoencephalography (MEG) before and after tDCS during cued "simple", "fast" and "challenged" swallow tasks with increasing levels of difficulty. Swallowing response times and accuracy were measured. Significant bilateral enhancement of cortical swallowing network activation was found in the theta frequency range after left tDCS in the fast swallow task (p=0.006) and following right tDCS in the challenged swallow task (p=0.007), but not after sham stimulation. No relevant behavioral effects were observed on swallow response time, but swallow precision improved after left tDCS (p<0.05). Anodal tDCS applied over the swallowing motor cortex of either hemisphere was able to increase bilateral swallow-related cortical network activation in a frequency specific manner. These neuroplastic effects were associated with subtle behavioral gains during complex swallow tasks in healthy individuals suggesting that tDCS deserves further evaluation as a treatment tool for dysphagia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: