Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Pathogenic assessment of avian influenza viruses in migratory birds.

  • Eun-Ha Kim‎ et al.
  • Emerging microbes & infections‎
  • 2021‎

ABSTRACTSeveral subtypes of avian influenza (AI) viruses have caused human infections in recent years; however, there is a severe knowledge gap regarding the capacity of wild bird viruses to infect mammals. To assess the risk of mammalian infection by AI viruses from their natural reservoirs, a panel of isolates from 34 wild birds was examined in animal models. All selected AI virus subtypes were found to predominantly possess Eurasian lineage, although reassortment with North American lineage AI viruses was also noted in some isolates. When used to infect chickens, 20 AI isolates could be recovered from oropharyngeal swabs at 5 days post-infection (dpi) without causing significant morbidity. Similarly, mild to no observable disease was observed in mice infected with these viruses although the majority replicated efficiently in murine lungs. As expected, wild bird AI isolates were found to recognize avian-like receptors, while a few strains also exhibited detectable human-like receptor binding. Selected strains were further tested in ferrets, and 15 out of 20 were found to shed the virus in the upper respiratory tract until 5 dpi. Overall, we demonstrate that a diversity of low-pathogenic AI viruses carried by wild migratory birds have the capacity to infect land-based poultry and mammalian hosts while causing minimal signs of clinical disease. This study reiterates that there is a significant capacity for interspecies transmission of AI viruses harboured by wild aquatic birds. Thus, these viruses pose a significant threat to human health underscoring the need for continued surveillance.


Influenza a virus migration and persistence in North American wild birds.

  • Justin Bahl‎ et al.
  • PLoS pathogens‎
  • 2013‎

Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.


Influenza in migratory birds and evidence of limited intercontinental virus exchange.

  • Scott Krauss‎ et al.
  • PLoS pathogens‎
  • 2007‎

Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay (New Jersey), United States, and examine the frequency of exchange of influenza viruses between the Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248 complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the Americas by migratory birds is likely to be a rare event.


Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes.

  • Jansen Araujo‎ et al.
  • Influenza and other respiratory viruses‎
  • 2018‎

There is insufficient knowledge about the relation of avian influenza virus (AIV) to migratory birds in South America. Accordingly, we studied samples obtained over a 4-year period (2009-2012) from wild birds at a major wintering site in southern Brazil.


Surveillance for avian influenza viruses in wild birds at live bird markets, Egypt, 2014-2016.

  • Ahmed S Kayed‎ et al.
  • Influenza and other respiratory viruses‎
  • 2019‎

Egypt is the habitat for a large number of bird species and serves as a vital stopover for millions of migratory birds during their annual migration between the Palearctic and Afrotropical ecozones. Surveillance for avian influenza viruses (AIVs) is critical to assessing risks for potential spreading of these viruses among domestic poultry. Surveillance for AIV among hunted and captured wild birds in Egypt was conducted in order to understand the characteristics of circulating viruses.


Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b in Wild Birds and Live Bird Markets, Egypt.

  • Rabeh El-Shesheny‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

Clade 2.3.4.4 H5Nx influenza viruses have further diversified into several subclades. Sub-clade 2.3.4.4b H5N1 viruses have been widely circulating in wild birds and detected in Europe, Africa, Asia, and North America since October 2020. In this study, we report the first detection of highly pathogenic avian influenza H5N1 clade 2.3.4.4b viruses in wild birds and domestic ducks from live bird markets in Egypt. Phylogenetic analysis revealed that the Egyptian H5N1 virus retained the genomic composition of Eurasian strains. Mutations in the viral proteins associated with zoonotic potential and pathogenicity were detected in Egyptian isolates. Egypt is considered a hot spot for the evolution of the influenza virus, so active surveillance of avian influenza viruses in Egypt is warranted.


Spread of influenza virus A (H5N1) clade 2.3.2.1 to Bulgaria in common buzzards.

  • Atanaska Marinova-Petkova‎ et al.
  • Emerging infectious diseases‎
  • 2012‎

On March 15, 2010, a highly pathogenic avian influenza virus was isolated from the carcass of a common buzzard (Buteo buteo) in Bulgaria. Phylogenetic analyses of the virus showed a close genetic relationship with influenza virus A (H5N1) clade 2.3.2.1 viruses isolated from wild birds in the Tyva Republic and Mongolia during 2009-2010. Designated A/common buzzard/Bulgaria/38WB/2010, this strain was highly pathogenic in chickens but had low pathogenicity in mice and ferrets and no molecular markers of increased pathogenicity in mammals. The establishment of clade 2.3.2.1 highly pathogenic avian influenza viruses of the H5N1 subtype in wild birds in Europe would increase the likelihood of health threats to humans and poultry in the region.


Sentinel surveillance for influenza A viruses in Lahore District Pakistan in flu season 2015-2016.

  • Saima Hasan‎ et al.
  • BMC infectious diseases‎
  • 2022‎

Influenza A virus (IAV) remains an important global public health threat with limited epidemiological information available from low-and-middle-income countries. The major objective of this study was to describe the proportions, temporal and spatial distribution, and demographic and clinical characteristics of IAV positive patients with influenza like illness (ILI) and severe acute respiratory illness (SARI) in Lahore, Pakistan.


Risk Factors of Influenza-Associated Respiratory Illnesses Reported to a Sentinel Hospital of Lahore, Pakistan: 2015-2016.

  • Saima Hasan‎ et al.
  • The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale‎
  • 2021‎

Epidemiological data about determinants of influenza A virus (IAV) in the Pakistani population is scarce. We aimed to conduct a prospective hospital-based active surveillance study from October 2015 to May 2016 to identify potential risk factors associated with IAV infection among patients with influenza-like illness (ILI) and severe acute respiratory illness (SARI). Surveillance was conducted in Lahore General Hospital, selected as a sentinel site in Lahore District, Pakistan. Nasal/throat samples were collected along with epidemiological and clinical data from enrolled patients. Real-time reverse-transcription polymerase chain reaction (rRT-PCR) was performed to identify IAV and its subtypes (H1N1pdm09, H3N2). Data were analyzed to determine risk factors and risk markers associated with IAV infections. A total of 311 suspected ILI and SARI cases were enrolled in the study, and among these 50 were IAV-positive. Of these 50 confirmed cases of IAV, 14 were subtyped as H1N1pdm09 and 15 were H3N2; the remaining 21 were untyped. A final multivariable model identified four independent risk factors/markers for IAV infection: exposure history to ILI patients within last 7 days and gender being male were identified as risk factors of IAV infection, while use of antibiotics prior to hospital consultation and presence of fever were identified as risk markers. We concluded that adopting nonpharmaceutical interventions like hand hygiene, masks, social distancing, and where possible, avoiding identified risk factors could decrease the risk of IAV infection and may prevent imminent outbreaks of IAV in the community.


Avian influenza virus (H11N9) in migratory shorebirds wintering in the Amazon Region, Brazil.

  • Jansen de Araujo‎ et al.
  • PloS one‎
  • 2014‎

Aquatic birds are the natural reservoir for avian influenza viruses (AIV). Habitats in Brazil provide stopover and wintering sites for water birds that migrate between North and South America. The current study was conducted to elucidate the possibility of the transport of influenza A viruses by birds that migrate annually between the Northern and Southern Hemispheres. In total, 556 orotracheal/cloacal swab samples were collected for influenza A virus screening using real-time RT-PCR (rRT-PCR). The influenza A virus-positive samples were subjected to viral isolation. Four samples were positive for the influenza A matrix gene by rRT-PCR. From these samples, three viruses were isolated, sequenced and characterized. All positive samples originated from a single bird species, the ruddy turnstone (Arenaria interpres), that was caught in the Amazon region at Caeté Bay, Northeast Pará, at Ilha de Canelas. To our knowledge, this is the first isolation of H11N9 in the ruddy turnstone in South America.


Molecular Characterization of Closely Related H6N2 Avian Influenza Viruses Isolated from Turkey, Egypt, and Uganda.

  • Yavuz Mercan‎ et al.
  • Viruses‎
  • 2021‎

Genetic analysis of circulating avian influenza viruses (AIVs) in wild birds at different geographical regions during the same period could improve our knowledge about virus transmission dynamics in natural hosts, virus evolution as well as zoonotic potential. Here, we report the genetic and molecular characterization of H6N2 influenza viruses isolated from migratory birds in Turkey, Egypt, and Uganda during 2017-2018. The Egyptian and Turkish isolates were genetically closer to each other than they were to the virus isolated from Uganda. Our results also suggest that multiple reassortment events were involved in the genesis of the isolated viruses. All viruses contained molecular markers previously associated with increased replication and/or pathogenicity in mammals. The results of this study indicate that H6N2 viruses carried by migratory birds on the West Asian/East African and Mediterranean/Black Sea flyways have the potential to transmit to mammals including humans. Additionally, adaptation markers in these viruses indicate the potential risk for poultry, which also increases the possibility of human exposure to these viruses.


Epidemiology and molecular characterization of avian influenza A viruses H5N1 and H3N8 subtypes in poultry farms and live bird markets in Bangladesh.

  • Ariful Islam‎ et al.
  • Scientific reports‎
  • 2023‎

Avian influenza virus (AIV) remains a global threat, with waterfowl serving as the primary reservoir from which viruses spread to other hosts. Highly pathogenic avian influenza (HPAI) H5 viruses continue to be a devastating threat to the poultry industry and an incipient threat to humans. A cross-sectional study was conducted in seven districts of Bangladesh to estimate the prevalence and subtypes (H3, H5, and H9) of AIV in poultry and identify underlying risk factors and phylogenetic analysis of AIVs subtypes H5N1 and H3N8. Cloacal and oropharyngeal swab samples were collected from 500 birds in live bird markets (LBMs) and poultry farms. Each bird was sampled by cloacal and oropharyngeal swabbing, and swabs were pooled for further analysis. Pooled samples were analyzed for the influenza A virus (IAV) matrix (M) gene, followed by H5 and H9 molecular subtyping using real-time reverse transcription-polymerase chain reaction (rRT-PCR). Non-H5 and Non-H9 influenza A virus positive samples were sequenced to identify possible subtypes. Selected H5 positive samples were subjected to hemagglutinin (HA) and neuraminidase (NA) gene sequencing. Multivariable logistic regression was used for risk factor analysis. We found that IAV M gene prevalence was 40.20% (95% CI 35.98-44.57), with 52.38%, 46.96%, and 31.11% detected in chicken, waterfowl, and turkey, respectively. Prevalence of H5, H3, and H9 reached 22%, 3.4%, and 6.9%, respectively. Waterfowl had a higher risk of having AIV (AOR: 4.75), and H5 (AOR: 5.71) compared to chicken; more virus was detected in the winter season than in the summer season (AOR: 4.93); dead birds had a higher risk of AIVs and H5 detection than healthy birds, and the odds of H5 detection increased in LBM. All six H5N1 viruses sequenced were clade 2.3.2.1a-R1 viruses circulating since 2015 in poultry and wild birds in Bangladesh. The 12 H3N8 viruses in our study formed two genetic groups that had more similarity to influenza viruses from wild birds in Mongolia and China than to previous H3N8 viruses from Bangladesh. The findings of this study may be used to modify guidelines on AIV control and prevention to account for the identified risk factors that impact their spread.


Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh.

  • Subrata Barman‎ et al.
  • Emerging microbes & infections‎
  • 2017‎

Highly pathogenic avian influenza H5N1 viruses were first isolated in Bangladesh in February 2007. Subsequently, clades 2.2.2, 2.3.4.2 and 2.3.2.1a were identified in Bangladesh, and our previous surveillance data revealed that by the end of 2014, the circulating viruses exclusively comprised clade 2.3.2.1a. We recently determined the status of circulating avian influenza viruses in Bangladesh by conducting surveillance of live poultry markets and waterfowl in wetland areas from February 2015 through February 2016. Until April 2015, clade 2.3.2.1a persisted without any change in genotype. However, in June 2015, we identified a new genotype of H5N1 viruses, clade 2.3.2.1a, which quickly became predominant. These newly emerged H5N1 viruses contained the hemagglutinin, neuraminidase and matrix genes of circulating 2.3.2.1a Bangladeshi H5N1 viruses and five other genes of low pathogenic Eurasian-lineage avian influenza A viruses. Some of these internal genes were closely related to those of low pathogenic viruses isolated from ducks in free-range farms and wild birds in a wetland region of northeastern Bangladesh, where commercially raised domestic ducks have frequent contact with migratory birds. These findings indicate that migratory birds of the Central Asian flyway and domestic ducks in the free-range farms in Tanguar haor-like wetlands played an important role in the emergence of this novel genotype of highly pathogenic H5N1 viruses.


Knowledge, Attitude, Practice and Barriers Associated with Influenza Vaccination among Health Care Professionals Working at Tertiary Care Hospitals in Lahore, Pakistan: A Multicenter Analytical Cross-Sectional Study.

  • Gulshan Umbreen‎ et al.
  • Vaccines‎
  • 2023‎

Health Care Professionals (HCPs), including doctors, nurses, pharmacists, and paramedics, are a high-risk group for influenza infection due to their continuous exposure to patients having a known or unknown history of influenza-like illnesses. Influenza vaccination is the most effective method of primary prevention. This study was conducted to assess knowledge, attitude, practice, and barriers associated with influenza vaccination among HCPs at tertiary care hospitals in Lahore, Pakistan. A multicenter analytical cross-sectional study was conducted among HCPs. Data were collected using a structured questionnaire. All statistical analyses were conducted in R software. A total of 400 HCPs were enrolled, and among these, 67% had a high level of knowledge and 65.5% had a positive attitude towards influenza vaccination. About 51% of HCPs adopted good practices leading to influenza vaccination. Results identified major barriers for influenza vaccinations, including unfamiliarity with vaccine availability (RII = 0.760), insufficient staff for administering the vaccine (RII = 0.649), lack of proper storage (RII = 0.625), safety concerns (RII = 0.613), and cost of vaccine (RII = 0.602). More than half of the HCPs showed a high level of knowledge, a positive attitude, and good practice against influenza vaccination. Despite the positive Knowledge, Attitude, and Practice (KAP) scores and published guidelines, a very low percentage of HCPs were vaccinated against influenza. Many hindering factors were associated with influenza vaccination.


Surveillance for influenza viruses in poultry and swine, west Africa, 2006-2008.

  • Emmanuel Couacy-Hymann‎ et al.
  • Emerging infectious diseases‎
  • 2012‎

To determine the extent of animal influenza virus circulation in Côte d'Ivoire, Benin, and Togo, we initiated systematic year-round active influenza surveillance in backyard birds (predominantly chickens, guinea fowl, and ducks) and pigs. A total of 26,746 swab specimens were screened by using reverse transcription PCR. Animal influenza prevalence was estimated at 0 (95% CIs for each of the 2 study years 0-0.04% to 0-1.48% [birds] and 0-0.28% to 0-5% [pigs]). In addition, 2,276 serum samples from the same populations were negative for influenza-specific antibodies. These data indicate that the environments and host populations previously identified as harboring high levels of influenza virus in Southeast Asia do not do so in these 3 countries. The combination of climate and animal density factors might be responsible for what appears to be the absence of influenza virus in the backyard sector of the 3 countries.


Host diversity and behavior determine patterns of interspecies transmission and geographic diffusion of avian influenza A subtypes among North American wild reservoir species.

  • Joseph T Hicks‎ et al.
  • PLoS pathogens‎
  • 2022‎

Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.


Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America.

  • Ahmed Kandeil‎ et al.
  • Nature communications‎
  • 2023‎

Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.


Emergence of a new genotype of clade 2.3.4.4b H5N1 highly pathogenic avian influenza A viruses in Bangladesh.

  • Subrata Barman‎ et al.
  • Emerging microbes & infections‎
  • 2023‎

Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact with migratory birds. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses. Additional LPAIs were found in both LPM (H4N6) and Tanguar Haor wetlands (H7N7). Genetic analyses of these LPAIs strongly suggested long-distance movement of viruses along the Central Asian migratory bird flyway. We also detected a novel clade 2.3.4.4b H5N1 virus from ducks in free-range farms in Tanguar Haor that was similar to viruses first detected in October 2020 in The Netherlands but with a different PB2. Identification of clade 2.3.4.4b HPAI H5N1 viruses in Tanguar Haor provides continued support of the role of migratory birds in transboundary movement of influenza A viruses (IAV), including HPAI viruses. Domestic ducks in free range farm in wetland areas, like Tangua Haor, serve as a conduit for the introduction of LPAI and HPAI viruses into Bangladesh. Clade 2.3.4.4b viruses have dominated in many regions of the world since mid-2021, and it remains to be seen if these viruses will replace the endemic clade 2.3.2.1a H5N1 viruses in Bangladesh.


Detection of a Novel Reassortant H9N9 Avian Influenza Virus in Free-Range Ducks in Bangladesh.

  • Rabeh El-Shesheny‎ et al.
  • Viruses‎
  • 2021‎

Wild aquatic birds are the primary natural reservoir for influenza A viruses (IAVs). In this study, an A(H9N9) influenza A virus (A/duck/Bangladesh/44493/2020) was identified via routine surveillance in free-range domestic ducks in Bangladesh. Phylogenetic analysis of hemagglutinin showed that the H9N9 virus belonged to the Y439-like lineage. The HA gene had the highest nucleotide identity to A/Bean Goose (Anser fabalis)/South Korea/KNU 2019-16/2019 (H9N2). The other seven gene segments clustered within the Eurasian lineage.


Insight into live bird markets of Bangladesh: an overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses.

  • Jasmine C M Turner‎ et al.
  • Emerging microbes & infections‎
  • 2017‎

Highly pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza (LPAI) H9N2 viruses have been recognized as threats to public health in Bangladesh since 2007. Although live bird markets (LBMs) have been implicated in the transmission, dissemination, and circulation of these viruses, an in-depth analysis of the dynamics of avian transmission of H5N1 and H9N2 viruses at the human-animal interface has been lacking. Here we present and evaluate epidemiological findings from active surveillance conducted among poultry in various production sectors in Bangladesh from 2008 to 2016. Overall, the prevalence of avian influenza viruses (AIVs) in collected samples was 24%. Our data show that AIVs are more prevalent in domestic birds within LBMs (30.4%) than in farms (9.6%). Quail, chickens and ducks showed a high prevalence of AIVs (>20%). The vast majority of AIVs detected (99.7%) have come from apparently healthy birds and poultry drinking water served as a reservoir of AIVs with a prevalence of 32.5% in collected samples. HPAI H5N1 was more frequently detected in ducks while H9N2 was more common in chickens and quail. LBMs, particularly wholesale markets, have become a potential reservoir for various types of AIVs, including HPAI H5N1 and LPAI H9N2. The persistence of AIVs in LBMs is of great concern to public health, and this study highlights the importance of regularly reviewing and implementing infection control procedures as a means of reducing the exposure of the general public to AIVs.Emerging Microbes & Infections (2017) 6, e12; doi:10.1038/emi.2016.142; published online 8 March 2017.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: