Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Synergistic pathogenesis of chicken infectious anemia virus and J subgroup of avian leukosis virus.

  • Jun Zhang‎ et al.
  • Poultry science‎
  • 2021‎

As important immunosuppressive viruses, chicken infectious anemia virus (CIAV) and subgroup J avian leukosis virus (ALV-J) have caused huge economic losses to the poultry industry globally. Recently, the co-infection of CIAV and ALV-J frequently occurred in the domestic chicken flocks in China. However, the synergistic pathogenesis of CIAV and ALV-J has not been fully investigated. Here, a co-infection study was performed to further understand the potential synergistic pathogenesis of CIAV and ALV-J. In vitro study showed that CIAV could promote the replication of ALV-J in HD11 cells, but ALV-J could not increase the replication of CIAV. Chicken infection study showed both CIAV and ALV-J with synergistic effects caused significant body weight loss to the infected chickens. Although ALV-J had no effect on CIAV viral shedding and tissue load, CIAV did significantly increase ALV-J viremia, viral shedding and tissue load in the co-infection group. Moreover, both CIAV and ALV-J could significantly inhibit the humoral immunity to H9N2 influenza virus and serotype 4 fowl adenovirus (FAdV-4). All these data demonstrate the synergistic pathogenesis for the co-infection of CIAV and ALV-J, and highlight the positive effect of CIAV on the pathogenesis of ALV-J.


Regulation of Avian Leukosis Virus Subgroup J Replication by Wnt/β-Catenin Signaling Pathway.

  • Dandan Qiao‎ et al.
  • Viruses‎
  • 2021‎

Wnt/β-catenin signaling is a highly conserved pathway related to a variety of biological processes in different cells. The regulation of replication of various viruses by Wnt/β-catenin signaling pathway has been reported. However, the interaction between the Wnt/β-catenin pathway and avian leukosis virus is unknown. In the present study, we investigated the effect of modulating the Wnt/β-catenin pathway during avian leukosis virus subgroup J (ALV-J) infection. The activation of the Wnt/β-catenin pathway by GSK-3 inhibitor increased ALV-J mRNA, viral protein expression, and virus production in CEF cells. This increase was suppressed by iCRT14, one of the specific inhibitors of the Wnt/β-catenin signaling pathway. Moreover, treatment with iCRT14 reduced virus titer and viral gene expression significantly in CEF and LMH cells in a dose-dependent manner. Inhibition Wnt/β-catenin signaling pathway by knockdown of β-catenin reduced virus proliferation in CEF cells also. Collectively, these results suggested that the status of Wnt/β-catenin signaling pathway modulated ALV-J replication. These studies extend our understanding of the role of Wnt/β-catenin signaling pathway in ALV-J replication and make a new contribution to understanding the virus-host interactions of avian leukosis virus.


Chicken Glycogen Synthase Kinase 3β Suppresses Innate Immune Responses and Enhances Avian Leukosis Virus Replication in DF-1 Cells.

  • Zhouhao Cui‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Glycogen synthase kinase 3β (GSK3β) is a widely distributed multifunctional serine/threonine kinase. In mammals, GSK3β regulates important life activities such as proinflammatory response, anti-inflammatory response, immunity, and cancer development. However, the biological functions of chicken GSK3β (chGSK3β) are still unknown. In the present study, the full-length cDNA of chGSK3β was first cloned and analyzed. Absolute quantification of chicken chGSK3β in 1-day-old specific-pathogen-free birds has shown that it is widely expressed in all tissues, with the highest level in brain and the lowest level in pancreas. Overexpression of chGSK3β in DF-1 cells significantly decreased the gene expression levels of interferon beta (IFN-β), IFN regulatory factor 7 (IRF7), Toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5), MX-1, protein kinase R (PKR), and oligoadenylate synthase-like (OASL), while promoting the replication of avian leukosis virus subgroup J (ALV-J). Conversely, levels of most of the genes detected in this study were increased when chGSK3β expression was knocked down using small interfering RNA (siRNA), which also inhibited the replication of ALV-J. These results suggest that chGSK3β plays an important role in the antiviral innate immune response in DF-1 cells, and it will be valuable to carry out further studies on the biological functions of chGSK3β. IMPORTANCE GSK3β regulates many life activities in mammals. Recent studies revealed that chGSK3β was involved in regulating antiviral innate immunity in DF-1 cells and also could positively regulate ALV-J replication. These results provide new insights into the biofunction of chGSK3β and the virus-host interactions of ALV-J. In addition, this study provides a basis for further research on the function of GSK3 in poultry.


Identification of novel B-cell epitope in gp85 of subgroup J avian leukosis virus and its application in diagnosis of disease.

  • Kun Qian‎ et al.
  • BMC veterinary research‎
  • 2018‎

The gp85 is the main envelope protein of avian leukosis subgroup J (ALV-J) involved in virus neutralization. Here, we mapped the epitope in ALV-J gp85 by ELISA using synthetic peptides and developed epitope based diagnostic methods for ALV-J infection.


Detection of ALV p27 in cloacal swabs and virus isolation medium by sELISA.

  • Xiaoyu Zhou‎ et al.
  • BMC veterinary research‎
  • 2019‎

Avian leukosis (AL), which is caused by avian leukosis virus (ALV), has led to substantial economic losses in the poultry industry. The kit used to detect all ALV-positive chickens in breeder flocks is very important for efficiently controlling AL. However, a new emerging ALV subtype is currently a severe challenge in the poultry industry.


Glycosylation of ALV-J Envelope Protein at Sites 17 and 193 Is Pivotal in the Virus Infection.

  • Moru Xu‎ et al.
  • Journal of virology‎
  • 2022‎

Glycans on envelope glycoprotein (Env) of the subgroup J avian leukosis virus (ALV-J) play an essential role in the virion integrity and infection process. In this study, we found that, among the 13 predicted N-linked glycosylation sites (NGSs) in gp85 of Tibetan chicken strain TBC-J6, N17, and N193/N191 are pivotal for virus replication. Further research illustrated that a mutation at N193 weakened Env-receptor binding in a blocking assay of the viral entrance, coimmunoprecipitation, and ELISA. Our studies also showed that N17 was involved in Env protein processing and later virion incorporation based on the detection of p27 and Env protein in the supernatant and gp37 in the cell culture. This report is systematic research on clarifying the biological function of NGSs on ALV-J gp85, which would provide valuable insight into the role of gp85 in the ALV life cycle and anti-ALV-J strategies. IMPORTANCE ALV-J is a retrovirus that can cause multiple types of tumors in chickens. Among all the viral proteins, the heavily glycosylated envelope protein is especially crucial. Glycosylation plays a major role in Env protein function, including protein processing, receptor attachment, and immune evasion. Notably, viruses isolated recently seem to lose their 6th and 11th NGS, which proved to be important in receptor binding. In our study, the 1st (N17) and 8th (N193) NGS of gp85 of the strain TBC-J6 can largely influence the titer of this virus. Deglycosylation at N193 weakened Env-receptor binding while mutation at N17 influenced Env protein processing. This study systemically analyzed the function of NGSs in ALV-J in different aspects, which may help us to understand the life cycle of ALV-J and provide antiviral targets for the control of ALV-J.


ALV-J GP37 molecular analysis reveals novel virus-adapted sites and three tyrosine-based Env species.

  • Jianqiang Ye‎ et al.
  • PloS one‎
  • 2015‎

Compared to other avian leukosis viruses (ALV), ALV-J primarily induces myeloid leukemia and hemangioma and causes significant economic loss for the poultry industry. The ALV-J Env protein is hypothesized to be related to its unique pathogenesis. However, the molecular determinants of Env for ALV-J pathogenesis are unclear. In this study, we compared and analyzed GP37 of ALV-J Env and the EAV-HP sequence, which has high homology to that of ALV-J Env. Phylogenetic analysis revealed five groups of ALV-J GP37 and two novel ALV-J Envs with endemic GP85 and EAV-HP-like GP37. Furthermore, at least 15 virus-adapted mutations were detected in GP37 compared to the EAV-HP sequence. Further analysis demonstrated that three tyrosine-based motifs (YxxM, ITIM (immune tyrosine-based inhibitory motif) and ITAM-like (immune tyrosine-based active motif like)) associated with immune disease and oncogenesis were found in the cytoplasmic tail of GP37. Based on the potential function and distribution of these motifs in GP37, ALV-J Env was grouped into three species, inhibitory Env, bifunctional Env and active Env. Accordingly, 36.91%, 61.74% and 1.34% of ALV-J Env sequences from GenBank are classified as inhibitory, bifunctional and active Env, respectively. Additionally, the Env of the ALV-J prototype strain, HPRS-103, and 17 of 18 EAV-HP sequences belong to the inhibitory Env. And models for signal transduction of the three ALV-J Env species were predicted. Our findings and models provide novel insights for identifying the roles and molecular mechanism of ALV-J Env in the unique pathogenesis of ALV-J.


Two novel monoclonal antibodies against fiber-1 protein of FAdV-4 and their application in detection of FAdV-4/10.

  • Hongxia Shao‎ et al.
  • BMC veterinary research‎
  • 2019‎

Recently, serotype 4 fowl adenovirus (FAdV-4) has spread widely and caused huge economic loss to poultry industry. However, little is known about the molecular pathogenesis of FAdV-4. Fiber protein is thought to be vital for its infection and pathogenesis.


The tyrosine phosphatase SHP-2 dephosphorylated by ALV-J via its Env efficiently promotes ALV-J replication.

  • Tuofan Li‎ et al.
  • Virulence‎
  • 2021‎

Avian leukosis virus subgroup J (ALV-J) generally induces hemangioma, myeloid leukosis, and immunosuppression in chickens, causing significant poultry industry economic losses worldwide. The unusual env gene of ALV-J, with low homology to other subgroups of ALVs, is associated with its unique pathogenesis. However, the exact molecular basis for the pathogenesis and oncogenesis of ALV-J is still not fully understood. In this study, ALV-J infection and the overexpression of Env could efficiently downregulate the phosphorylation of SHP-2 (pSHP-2) in vitro and in vivo. The membrane-spanning domain (MSD) in Env Gp37 was the functional domain responsible for pSHP-2 downregulation. Moreover, the overexpression of SHP-2 could effectively promote the replication of ALV-J, whereas knockout or allosteric inhibition of SHP-2 could inhibit ALV-J replication. In addition, the knockout of endogenous chicken SHP-2 could significantly increase the proliferation ability of DF-1 cells. All these data demonstrate that SHP-2 dephosphorylated by ALV-J Env could efficiently promote ALV-J replication, highlighting the important role of SHP-2 in the pathogenesis of ALV-J and providing a new target for developing antiviral drugs against ALV-J.


Identification of novel viral receptors with cell line expressing viral receptor-binding protein.

  • Mei Mei‎ et al.
  • Scientific reports‎
  • 2015‎

The viral cell receptors and infection can be blocked by the expression of the viral receptor-binding protein. Thus, the viral cell receptor is an attractive target for anti-viral strategies, and the identification of viral cell receptor is critical for better understanding and controlling viral disease. As a model system for viral entry and anti-retroviral approaches, avian sarcoma/leukosis virus (ASLV, including the A-J ten subgroups) has been studied intensively and many milestone discoveries have been achieved based on work with ASLV. Here, we used a DF1 cell line expressed viral receptor-binding protein to efficiently identify chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus ALV-J (avian leukosis virus subgroup J). Our data demonstrate that antibodies or siRNA to chANXA2 significantly inhibited ALV-J infection and replication, and over-expression of chANXA2 permitted the entry of ALV-J into its non-permissible cells. Our findings have not only identified chANXA2 as a novel biomarker for anti-ALV-J, but also demonstrated that cell lines with the expression of viral receptor-binding protein could be as efficient tools for isolating functional receptors to identify novel anti-viral targets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: