Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 191 papers

Avian leukosis virus in indigenous chicken breeds, China.

  • Xuan Dong‎ et al.
  • Emerging microbes & infections‎
  • 2015‎

No abstract available


Domestic chickens activate a piRNA defense against avian leukosis virus.

  • Yu Huining Sun‎ et al.
  • eLife‎
  • 2017‎

PIWI-interacting RNAs (piRNAs) protect the germ line by targeting transposable elements (TEs) through the base-pair complementarity. We do not know how piRNAs co-evolve with TEs in chickens. Here we reported that all active TEs in the chicken germ line are targeted by piRNAs, and as TEs lose their activity, the corresponding piRNAs erode away. We observed de novo piRNA birth as host responds to a recent retroviral invasion. Avian leukosis virus (ALV) has endogenized prior to chicken domestication, remains infectious, and threatens poultry industry. Domestic fowl produce piRNAs targeting ALV from one ALV provirus that was known to render its host ALV resistant. This proviral locus does not produce piRNAs in undomesticated wild chickens. Our findings uncover rapid piRNA evolution reflecting contemporary TE activity, identify a new piRNA acquisition modality by activating a pre-existing genomic locus, and extend piRNA defense roles to include the period when endogenous retroviruses are still infectious.


A novel recombinant avian leukosis virus isolated from gamecocks induced pathogenicity in Three-Yellow chickens: a potential infection source of avian leukosis virus to the commercial chickens.

  • Peikun Wang‎ et al.
  • Poultry science‎
  • 2019‎

One natural recombinant avian leukosis virus (ALV) strain GX14DJ3-18 was isolated from a native gamecock by DF-1 cell culture and identified with Polymerase Chain Reaction (PCR), immunofluorescence assay and the viral genome's nucleotide sequencing. This strain was revealed as a novel recombinant virus with nucleotide sequence similarities of 95.4% Long Terminal Repeated (LTR), 95.8% 5', UTR, 97.9% gag, and 92.9% 3'untranslated regions (UTR) in ALV-J. Also we found sequence similarities of 99.3% pol and 99.0% gp37 in ALV-E, and 89.9% gp85 in ALV-A. The simulated congenital infection with GX14DJ3-18 in Three-Yellow chickens exhibited a significant negative effect on the development of immune organs (P < 0.05). Also, lower antibody responses were found to vaccinations with the commercial vaccines of Newcastle disease virus and with subtypes H5 and H9 of avian influenza virus (P < 0.05). The incidence of tumor or tumor-like lesions in the challenged birds was 14.28% (5/35), while none were observed in the un-challenged control group (0/35). These results suggested that GX14DJ3-18 is a novel recombinant ALV that can induce pathogenicity in the commercial Three-Yellow chickens. We speculated that cross-provincial sales of gamecocks in which ALVs have not been eradicated thoroughly might be a potential route for the transmission of ALVs to commercial chickens.


A cell line resistant to avian leukosis virus subgroup B infection.

  • Zi Jun Zhao‎ et al.
  • Poultry science‎
  • 2019‎

The expression of env proteins that bind to viral cell receptors on avian leukosis virus (ALV)-susceptible cells can block ALV infection. In this study, we constructed a cell line (DF-1/B) by expressing the ALV-B env protein in DF-1 cells. PCR, immune fluorescence assay, Western blot, and immune electron microscopy results showed that the env gene can be stably expressed in DF-1cells and the env protein could be detected on the DF-1 cell membrane. An antiviral experiment concluded that the DF-1/B cell line could be resistant to 1 × 104 TCID50 ALV-B virus infection, but had no inhibitory effect on other subgroup ALV. This means that the DF-1/B cell line is specifically resistant to ALV-B and can be used as a tool for ALV-B diagnosis.


Avian leukosis virus subgroup J induces its receptor--chNHE1 up-regulation.

  • Weiguo Feng‎ et al.
  • Virology journal‎
  • 2016‎

Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus which causes immunosuppression and neoplasia in meat-type and egg-type chickens. ALV-J infects host cells via specific interaction between the viral Env and the cell surface receptor -chicken sodium hydrogen exchanger type 1 (chNHE1). NHE1 involved in altering the cellular pH and playing a critical role in tumorigenesis. However, little is known about the other relationship between ALV-J and chNHE1.


Subgroup J avian leukosis virus infection inhibits autophagy in DF-1 cells.

  • Haixia Liu‎ et al.
  • Virology journal‎
  • 2013‎

Subgroup J avian leukosis virus (ALV-J) infection can induce tumor-related diseases in chickens. Previous studies by our laboratory demonstrated that ALV-J infection of DF-1 cells resulted in altered activity and phosphorylation of AKT. However, little is known about the subsequent activation of host DF-1 cells.


Synergistic pathogenesis of chicken infectious anemia virus and J subgroup of avian leukosis virus.

  • Jun Zhang‎ et al.
  • Poultry science‎
  • 2021‎

As important immunosuppressive viruses, chicken infectious anemia virus (CIAV) and subgroup J avian leukosis virus (ALV-J) have caused huge economic losses to the poultry industry globally. Recently, the co-infection of CIAV and ALV-J frequently occurred in the domestic chicken flocks in China. However, the synergistic pathogenesis of CIAV and ALV-J has not been fully investigated. Here, a co-infection study was performed to further understand the potential synergistic pathogenesis of CIAV and ALV-J. In vitro study showed that CIAV could promote the replication of ALV-J in HD11 cells, but ALV-J could not increase the replication of CIAV. Chicken infection study showed both CIAV and ALV-J with synergistic effects caused significant body weight loss to the infected chickens. Although ALV-J had no effect on CIAV viral shedding and tissue load, CIAV did significantly increase ALV-J viremia, viral shedding and tissue load in the co-infection group. Moreover, both CIAV and ALV-J could significantly inhibit the humoral immunity to H9N2 influenza virus and serotype 4 fowl adenovirus (FAdV-4). All these data demonstrate the synergistic pathogenesis for the co-infection of CIAV and ALV-J, and highlight the positive effect of CIAV on the pathogenesis of ALV-J.


Proteomics of DF-1 cells infected with avian leukosis virus subgroup J.

  • Zhongjun Fan‎ et al.
  • Virus research‎
  • 2012‎

Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has led to severe economic losses in the poultry industry in China in recent years. The pathogenesis of virus infection and virus-host interactions are still not well elucidated. In this paper, we investigated the expression changes for cellular proteins in DF-1 cells infected with ALV-J. Comparative analyses revealed that the majority of the altered proteins in DF-1 cells appeared at 6-12h after ALV-J infection. Mass spectrometry identified 74 altered cellular proteins, including 30 up-regulated proteins and 44 down-regulated proteins. Some of these proteins are involved in cell cytoskeleton, metabolic processes, response to stimulus and immune responses. Other proteins, such as DJ-1, UCHL1, VDAC1 and HMGB1, have some relationship to apoptosis or oncogenesis. The changes in the transcriptional profile of DJ-1, UCHL1, VDAC1 and HMGB1 in infected as compared to uninfected DF-1 cells were confirmed by real-time RT-PCR. Our work gives some information about differential protein expression in cells infected with ALV-J, which will help us to understand viral pathogenicity.


Semen extracellular vesicles mediate vertical transmission of subgroup J avian leukosis virus.

  • Liqin Liao‎ et al.
  • Virologica Sinica‎
  • 2022‎

Subgroup J avian leukosis virus (ALV-J) is a highly oncogenic retrovirus that has been devastating the global poultry industry since the late 1990s. The major infection model of ALV-J is vertical transmission, which is responsible for the congenital infection of progeny from generation to generation. Increasing evidence has suggested that extracellular vesicles (EVs) derived from virus-infected cells or biological fluids have been thought to be vehicles of transmission for viruses. However, the role of EVs in infection and transmission of ALV-J remains obscure. In the present study, semen extracellular vesicles (SE) were isolated and purified from ALV-J-infected rooster seminal plasma (SE-ALV-J), which was shown to contain ALV-J genomic RNA and partial viral proteins, as determined by RNA sequencing, reverse transcription-quantitative PCR and Western blotting. Furthermore, SE-ALV-J was proved to be able to transmit ALV-J infection to host cells and establish productive infection. More importantly, artificial insemination experiments showed that SE-ALV-J transmitted ALV-J infection to SPF hens, and subsequently mediated vertical transmission of ALV-J from the SPF hens to the progeny chicks. Taken together, the results of the present study suggested that ALV-J utilized host semen extracellular vesicles as a novel means for vertical transmission, enhancing our understanding on mechanisms underlying ALV-J transmission.


Diversity of Avian leukosis virus subgroup J in local chickens, Jiangxi, China.

  • Haiqin Li‎ et al.
  • Scientific reports‎
  • 2021‎

Avian leukosis caused by avian leukosis virus (ALV) is one of the most severe diseases endangering the poultry industry. When the eradication measures performed in commercial broilers and layers have achieved excellent results, ALV in some local chickens has gradually attracted attention. Since late 2018, following the re-outbreak of ALV-J in white feather broilers in China, AL-like symptoms also suddenly broke out in some local flocks, leading to great economic losses. In this study, a systematic epidemiological survey was carried out in eight local chicken flocks in Jiangxi Province, China, and 71 strains were finally isolated from 560 samples, with the env sequences of them being successfully sequenced. All of those new isolates belong to subgroup J but they have different molecular features and were very different from the strains that emerged in white feature broilers recently, with some strains being highly consistent with those previously isolated from commercial broilers, layers and other flocks or even isolated from USA and Russian, suggesting these local chickens have been acted as reservoirs to accumulate various ALV-J strains for a long time. More seriously, phylogenetic analysis shows that there were also many novel strains emerging and in a separate evolutionary branch, indicating several new mutated ALVs are being bred in local chickens. Besides, ALV-J strains isolated in this study can be further divided into ten groups, while there were more or fewer groups in different chickens, revealing that ALV may cross propagate in those flocks. The above analyses explain the complex background and future evolution trend of ALV-J in Chinese local chickens, providing theoretical support for the establishment of corresponding prevention and control measures.


Reticuloendotheliosis virus and avian leukosis virus subgroup J synergistically increase the accumulation of exosomal miRNAs.

  • Defang Zhou‎ et al.
  • Retrovirology‎
  • 2018‎

Co-infection with avian leukosis virus subgroup J and reticuloendotheliosis virus induces synergistic pathogenic effects and increases mortality. However, the role of exosomal miRNAs in the molecular mechanism of the synergistic infection of the two viruses remains unknown.


Rapid detection of avian leukosis virus subgroup J by cross-priming amplification.

  • Yong Xiang‎ et al.
  • Scientific reports‎
  • 2021‎

Avian leukosis virus subgroup J (ALV-J) causes oncogenic disease in chickens in China, resulting in great harm to poultry production, and remains widespread in China. Herein, we employed a cross-priming amplification (CPA) approach and a nucleic acid detection device to establish a visual rapid detection method for ALV-J. The sensitivity of CPA, polymerase chain reaction (PCR) and real-time PCR (RT-PCR) was compared, and the three methods were used to detect ALV-J in the cell cultures which inoculated with clinical plasma. The result showed when the amplification reaction was carried out at 60 °C for just 60 min, the sensitivity of CPA was 10 times higher than conventional PCR, with high specificity, which was comparable with RT-PCR, based on detection of 123 cell cultures which inoculated with clinical plasma, the coincidence rate with real-time PCR was 97.3% (71/73). CPA detection of ALV-J does not require an expensive PCR instrument; a simple water bath or incubator is sufficient for complete DNA amplification, and the closed nucleic acid detection device avoids aerosol pollution, making judgment of results more intuitive and objective. The CPA assay would be a promising simple, rapid and sensitive method for identification of ALV-J.


Endogenous avian leukosis virus subgroup E elements of the chicken reference genome.

  • Andrew S Mason‎ et al.
  • Poultry science‎
  • 2020‎

The chicken reference genome contains 2 endogenous avian leukosis virus subgroup E (ALVE) insertions, but gaps and unresolved repetitive sequences in previous assemblies have hindered their precise characterization. Detailed analysis of the most recent reference genome (GRCg6a) now shows both ALVEs within contiguous chromosome assemblies for the first time. ALVE6 (ALVE-JFevA) and ALVE-JFevB are both located on chromosome 1, with ALVE6 close to the p-arm telomere. ALVE-JFevB is a structurally intact element containing the ALVE gag, pol, and env genes and is capable of forming replication competent viruses. In contrast, ALVE6 contains a 3,352 bp 5' truncation and lacks the entire 5' long terminal repeat and gag gene. Despite this, ALVE6 remains able to produce intact envelope protein, likely due to a mutation in the recognition site for a known inhibitory miRNA (miR-155). Whole genome resequencing data sets from layers, broilers, and 3 independent sources of wild-caught red junglefowl were surveyed for the presence of each of these reference genome ALVEs. ALVE-JFevB was found in no other chicken or red junglefowl genomes, whereas ALVE6 was identified in some layers, broilers, and native breeds but not within any other red junglefowl genome. Improved assembly contiguity has facilitated better characterization of the 2 ALVEs of the chicken reference genome. However, both the limited ALVE content and unique presence of ALVE-JFevB suggests that the reference individual is unrepresentative of ancestral Gallus gallus ALVE diversity.


Inhibition of avian leukosis virus subgroup J replication by miRNA targeted against env.

  • Wei Wang‎ et al.
  • Virus genes‎
  • 2013‎

No effective vaccine has been developed against the subgroup J avian leukosis virus (ALV-J). The genetic diversity of ALV-J might be related to the env gene, therefore, we selected conserved sequences of the env gene and designed interference sequence. In this study, microRNAs (miRNAs) were designed and synthesized, corresponding to conserved regions of the env gene. These miRNAs were cloned into the linearized eukaryotic expression vector. The recombinant plasmids were transfected into DF-1 cells. After transfection, the cells were inoculated with ALV-J. In reporter assays, the transfection efficiency is 80% by indirect immunofluorescence (IFA). Expression of the virus envelope glycoprotein was measured by IFA and western blotting assays. The relative expression of env gene was determined using quantitative PCR. Our results show that the mi-env 231 and mi-env 1384 could effectively suppress the replication of ALV-J with an efficiency of 68.7-75.2%. These data suggest that the miRNAs targeting the env can inhibit replication of ALV-J efficiently. This finding provides evidence that miRNAs could be used as a potential tool against ALV infection.


Avian leukosis virus (ALV) is highly prevalent in fancy-chicken flocks in Saxony.

  • Markus Freick‎ et al.
  • Archives of virology‎
  • 2022‎

The current prevalence of avian leukosis virus (ALV) in fancy chickens in Germany is unknown. Therefore, 537 cloacal swabs from 50 purebred fancy-chicken flocks in Saxony were tested for the presence of the ALV p27 protein using a commercial antigen-capture ELISA. The detection rate was 28.7% at the individual-animal level and 56.0% at the flock level. Phylogenetic analysis of PCR products obtained from 22 different flocks revealed the highest similarity to ALV subtype K. When classifying breeds by their origin, ALV detection rates differed significantly. Evaluation of questionnaire data revealed no significant differences between ALV-positive and negative flocks regarding mortality.


Diversity of endogenous avian leukosis virus subgroup E (ALVE) insertions in indigenous chickens.

  • Andrew S Mason‎ et al.
  • Genetics, selection, evolution : GSE‎
  • 2020‎

Avian leukosis virus subgroup E (ALVE) insertions are endogenous retroviruses (ERV) that are restricted to the domestic chicken and its wild progenitor. In commercial chickens, ALVE are known to have a detrimental effect on productivity and provide a source for recombination with exogenous retroviruses. The wider diversity of ALVE in non-commercial chickens and the role of these elements in ERV-derived immunity (EDI) are yet to be investigated.


Avian leukosis virus subgroup J and reticuloendotheliosis virus coinfection induced TRIM62 regulation of the actin cytoskeleton.

  • Ling Li‎ et al.
  • Journal of veterinary science‎
  • 2020‎

Coinfection with avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) is common in chickens, and the molecular mechanism of the synergistic pathogenic effects of the coinfection is not clear. Exosomes have been identified as new players in the pathogenesis of retroviruses. The different functions of exosomes depend on their cargo components.


Enhanced inhibition of Avian leukosis virus subgroup J replication by multi-target miRNAs.

  • Qing-Wen Meng‎ et al.
  • Virology journal‎
  • 2011‎

Avian leukosis virus (ALV) is a major infectious disease that impacts the poultry industry worldwide. Despite intensive efforts, no effective vaccine has been developed against ALV because of mutations that lead to resistant forms. Therefore, there is a dire need to develop antiviral agents for the treatment of ALV infections and RNA interference (RNAi) is considered an effective antiviral strategy.


Endogenous Avian Leukosis Virus in Combination with Serotype 2 Marek's Disease Virus Significantly Boosted the Incidence of Lymphoid Leukosis-Like Bursal Lymphomas in Susceptible Chickens.

  • Jody K Mays‎ et al.
  • Journal of virology‎
  • 2019‎

In 2010, sporadic cases of avian leukosis virus (ALV)-like bursal lymphoma, also known as spontaneous lymphoid leukosis (LL)-like tumors, were identified in two commercial broiler breeder flocks in the absence of exogenous ALV infection. Two individual ALV subgroup E (ALV-E) field strains, designated AF227 and AF229, were isolated from two different breeder farms. The role of these ALV-E field isolates in development of and the potential joint impact in conjunction with a Marek's disease virus (MDV) vaccine (SB-1) were further characterized in chickens of an experimental line and commercial broiler breeders. The experimental line 0.TVB*S1, commonly known as the rapid feathering-susceptible (RFS) line, of chickens lacks all endogenous ALV and is fully susceptible to all subgroups of ALV, including ALV-E. Spontaneous LL-like tumors occurred following infection with AF227, AF229, and a reference ALV-E strain, RAV60, in RFS chickens. Vaccination with serotype 2 MDV, SB-1, in addition to AF227 or AF229 inoculation, significantly enhanced the spontaneous LL-like tumor incidence in the RFS chickens. The spontaneous LL-like tumor incidence jumped from 14% by AF227 alone to 42 to 43% by AF227 in combination with SB-1 in the RFS chickens under controlled conditions. RNA-sequencing analysis of the LL-like lymphomas and nonmalignant bursa tissues of the RFS line of birds identified hundreds of differentially expressed genes that are reportedly involved in key biological processes and pathways, including signaling and signal transduction pathways. The data from this study suggested that both ALV-E and MDV-2 play an important role in enhancement of the spontaneous LL-like tumors in susceptible chickens. The underlying mechanism may be complex and involved in many chicken genes and pathways, including signal transduction pathways and immune system processes, in addition to reported viral genes.IMPORTANCE Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation.


Regulation of Avian Leukosis Virus Subgroup J Replication by Wnt/β-Catenin Signaling Pathway.

  • Dandan Qiao‎ et al.
  • Viruses‎
  • 2021‎

Wnt/β-catenin signaling is a highly conserved pathway related to a variety of biological processes in different cells. The regulation of replication of various viruses by Wnt/β-catenin signaling pathway has been reported. However, the interaction between the Wnt/β-catenin pathway and avian leukosis virus is unknown. In the present study, we investigated the effect of modulating the Wnt/β-catenin pathway during avian leukosis virus subgroup J (ALV-J) infection. The activation of the Wnt/β-catenin pathway by GSK-3 inhibitor increased ALV-J mRNA, viral protein expression, and virus production in CEF cells. This increase was suppressed by iCRT14, one of the specific inhibitors of the Wnt/β-catenin signaling pathway. Moreover, treatment with iCRT14 reduced virus titer and viral gene expression significantly in CEF and LMH cells in a dose-dependent manner. Inhibition Wnt/β-catenin signaling pathway by knockdown of β-catenin reduced virus proliferation in CEF cells also. Collectively, these results suggested that the status of Wnt/β-catenin signaling pathway modulated ALV-J replication. These studies extend our understanding of the role of Wnt/β-catenin signaling pathway in ALV-J replication and make a new contribution to understanding the virus-host interactions of avian leukosis virus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: