Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 59 papers

Toxic Effects of Different Coating-Related Functionalized Nanoparticles on Aquatic Organisms.

  • David Hernández-Moreno‎ et al.
  • Toxics‎
  • 2024‎

The peculiar physico-chemical characteristics of nanomaterials (NMs) and the use of different coatings to improve their expected properties result in a huge amount of nanoforms, which vary in chemical composition, size, shape and surface characteristics. This makes it almost impossible to test all the nanoforms available, and efforts have been made to establish grouping or read-across strategies. The aim of this work was to find a behavior pattern of effect among nanoforms of different metallic core nanoparticles (NPs) (TiO2, CeO2 and Ag NP) with the same coatings (sodium citrate, poly (ethylene glycol), dodecylphosphonic acid or oleylamine). Daphnia magna, rainbow trout and two fish cell lines (PLHC-1 and RTH-149) were exposed to a range of concentrations (up to 100 mg/L) of the uncoated or coated NPs. Ag NPs were the most toxic, followed by CeO2 NPs and finally by TiO2 NPs. The results show that a clear pattern of toxicity in the studied species could not be established related to the coatings. However, it was possible to confirm different inter-species sensitivities. RTH-149 was the most sensitive cell line, and Daphnia magna was more sensitive than fish. Moreover, some differences in coating-core interactions were found between the metal oxide and the metal NPs in Daphnia magna.


Environmental Risk Assessment of Vehicle Exhaust Particles on Aquatic Organisms of Different Trophic Levels.

  • Konstantin Pikula‎ et al.
  • Toxics‎
  • 2021‎

Vehicle emission particles (VEPs) represent a significant part of air pollution in urban areas. However, the toxicity of this category of particles in different aquatic organisms is still unexplored. This work aimed to extend the understanding of the toxicity of the vehicle exhaust particles in two species of marine diatomic microalgae, the planktonic crustacean Artemia salina, and the sea urchin Strongylocentrotus intermedius. These aquatic species were applied for the first time in the risk assessment of VEPs. Our results demonstrated that the samples obtained from diesel-powered vehicles completely prevented egg fertilization of the sea urchin S. intermedius and caused pronounced membrane depolarization in the cells of both tested microalgae species at concentrations between 10 and 100 mg/L. The sample with the highest proportion of submicron particles and the highest content of polycyclic aromatic hydrocarbons (PAHs) had the highest growth rate inhibition in both microalgae species and caused high toxicity to the crustacean. The toxicity level of the other samples varied among the species. We can conclude that metal content and the difference in the concentrations of PAHs by itself did not directly reflect the toxic level of VEPs, but the combination of both a high number of submicron particles and high PAH concentrations had the highest toxic effect on all the tested species.


Environmental Toxicity Assessment of Sodium Fluoride and Platinum-Derived Drugs Co-Exposure on Aquatic Organisms.

  • Davide Di Paola‎ et al.
  • Toxics‎
  • 2022‎

Pharmaceuticals are widely acknowledged to be a threat to aquatic life. Over the last two decades, the steady use of biologically active chemicals for human health has been mirrored by a rise in the leaking of these chemicals into natural environments. The aim of this work was to detect the toxicity of sodium fluoride (NaF) exposure and platinum-derived drugs in an ecological setting on aquatic organism development. From 24 to 96 h post-fertilization, zebrafish embryos were treated to dosages of NaF 10 mg/L-1 + cisplatin (CDDP) 100 μM, one with NaF 10 mg/L-1 + carboplatin (CARP) 25 μM, one with NaF 10 mg/L-1 + CDDP 100 μM + CARP 25 μM. Fluoride exposure in combination with Cisplatin and Carboplatin (non-toxic concentration) had an effect on survival and hatching rate according to this study. Additionally, it significantly disturbed the antioxidant defense system and increased ROS in zebrafish larvae. NaF 10 mg/L-1 associated with CDDP 100 μM and CARP 25 μM, increased the production of apoptosis-related proteins (caspase 3, bax, and bcl-2) and the downregulation of acetylcholinesterase (AChE) activity, while no effect was seen for the single exposure.


Research Progress and New Ideas on the Theory and Methodology of Water Quality Criteria for the Protection of Aquatic Organisms.

  • Chenglian Feng‎ et al.
  • Toxics‎
  • 2023‎

Water quality criteria (WQC) for the protection of aquatic organisms mainly focus on the maximum threshold values of the pollutants that do not have harmful effects on aquatic organisms. The WQC value is the result obtained based on scientific experiments in the laboratory and data fitting extrapolation and is the limit of the threshold value of pollutants or other harmful factors in the water environment. Until now, many studies have been carried out on WQC for the protection of aquatic organisms internationally, and several countries have also issued their own relevant technical guidelines. Thus, the WQC method for the protection of aquatic organisms has been basically formed, with species sensitivity distribution (SSD) as the main method and the assessment factor (AF) as the auxiliary method. In addition, in terms of the case studies on WQC, many scholars have conducted relevant case studies on various pollutants. At the national level, several countries have also released WQC values for typical pollutants. This study systematically discusses the general situation, theoretical methodology and research progress of WQC for the protection of aquatic organisms, and deeply analyzes the key scientific issues that need to be considered in the research of WQC. Furthermore, combined with the specific characteristics of the emerging pollutants, some new ideas and directions for future WQC research for the protection of aquatic organisms are also proposed.


Comparative Study on the Distribution of Essential, Non-Essential Toxic, and Other Elements across Trophic Levels in Various Edible Aquatic Organisms in Sri Lanka and Dietary Human Risk Assessment.

  • Anura Upasanta-Kumara Wickrama-Arachchige‎ et al.
  • Toxics‎
  • 2022‎

Thirty-six elements are categorized as essential but toxic in excess amount (EBTEs), non-essential toxic (NETs), and Other in 29 different edible aquatic species dwelling in offshore pelagic, and coastal and estuarine (CE) ecosystems were investigated in Sri Lanka. Elements were analyzed using an energy-dispersive X-ray fluorescence (EDXRF) spectrometer, and an NIC MA-3000 Mercury Analyzer. EBTEs showed a negative relationship, whereas NETs showed a positive relationship between the concentration (mg/kg wet weight) and trophic levels in both ecosystems. EBTEs showed trophic dilution, whereas NETs showed trophic magnification. Some elements in a few organisms exceeded the maximum allowable limit which is safe for human consumption. There was a positive relationship (R2 = 0.85) between the concentration of mercury and body weight of yellowfin tuna (YFT). For the widely consumed YFT, the calculated hazard index (HI) for the non-carcinogenic health and exposure daily intake of NETs for adults were 0.27 and 9.38 × 10-5 mg/kg bw/day, respectively. The estimated provisional tolerable weekly intake (PTWI) (μg/kg bw/w) was 0.47 for arsenic and 0.05 for antimony, cadmium, mercury, and lead. The HI and PTWI values were below the recommended limits; thus, consumption of YFT does not pose any health risk for Sri Lankan adults.


Poly- and Perfluoroalkyl Substances (PFAS): Do They Matter to Aquatic Ecosystems?

  • Sipra Nayak‎ et al.
  • Toxics‎
  • 2023‎

Poly- and perfluoroalkyl substances (PFASs) are a group of anthropogenic chemicals with an aliphatic fluorinated carbon chain. Due to their durability, bioaccumulation potential, and negative impacts on living organisms, these compounds have drawn lots of attention across the world. The negative impacts of PFASs on aquatic ecosystems are becoming a major concern due to their widespread use in increasing concentrations and constant leakage into the aquatic environment. Furthermore, by acting as agonists or antagonists, PFASs may alter the bioaccumulation and toxicity of certain substances. In many species, particularly aquatic organisms, PFASs can stay in the body and induce a variety of negative consequences, such as reproductive toxicity, oxidative stress, metabolic disruption, immunological toxicity, developmental toxicity, cellular damage and necrosis. PFAS bioaccumulation plays a significant role and has an impact on the composition of the intestinal microbiota, which is influenced by the kind of diet and is directly related to the host's well-being. PFASs also act as endocrine disruptor chemicals (EDCs) which can change the endocrine system and result in dysbiosis of gut microbes and other health repercussions. In silico investigation and analysis also shows that PFASs are incorporated into the maturing oocytes during vitellogenesis and are bound to vitellogenin and other yolk proteins. The present review reveals that aquatic species, especially fishes, are negatively affected by exposure to emerging PFASs. Additionally, the effects of PFAS pollution on aquatic ecosystems were investigated by evaluating a number of characteristics, including extracellular polymeric substances (EPSs) and chlorophyll content as well as the diversity of the microorganisms in the biofilms. Therefore, this review will provide crucial information on the possible adverse effects of PFASs on fish growth, reproduction, gut microbial dysbiosis, and its potential endocrine disruption. This information aims to help the researchers and academicians work and come up with possible remedial measures to protect aquatic ecosystems as future works need to be focus on techno-economic assessment, life cycle assessment, and multi criteria decision analysis systems that screen PFAS-containing samples. New innovative methods requires further development to reach detection at the permissible regulatory limits.


Ecotoxicological Assessment of "Glitter" Leachates in Aquatic Ecosystems: An Integrated Approach.

  • Manuela Piccardo‎ et al.
  • Toxics‎
  • 2022‎

The most worrisome fraction within plastic pollution is that of microplastics (MP). A category of MP almost completely ignored is that of glitter. The objective of this study is to test the toxicity of nine types of glitter leachate (3 soak times: 3, 90 and 180 days) on model organisms in freshwater (Allivibrio fischeri, Raphidocelis subcapitata, Daphnia magna) and saltwater (Allivibrio fischeri, Phaeodactylum tricornutum, Paracentrotus lividus). An integrated approach was applied to obtain the percentage of ecotoxicological risk. The results show that (i) photosynthesizing primary producers are the most sensitive trophic level; (ii) algae transitioned from growth inhibition to biostimulation; (iii) D. magna showed higher sensitivity after 48 h compared to 24 h; (iv) A. fischeri responded more strongly in saltwater than in freshwater. The integrated data show a greater risk associated with the marine environment, with the highest risk for glitters that are hexagonal and composed of poly-methyl-methacrylate. Our multivariate analysis shows that the toxicity of plastic leaching is a complex phenomenon that depends on the sensitivity of the species, in some cases on the soaking time and on the medium, and is not clearly linked to the polymer type, the contact area or the colors of the particles.


Exposure to Environmentally Relevant Concentrations of Polystyrene Microplastics Increases Hexavalent Chromium Toxicity in Aquatic Animals.

  • Jaehee Kim‎ et al.
  • Toxics‎
  • 2022‎

The prevalence of hexavalent chromium [Cr(VI)] and microplastics (MPs) is ubiquitous and is considered a threat to aquatic biota. MPs can act as a vector for waterborne metals; however, the combined effects of Cr(VI) and MPs on aquatic organisms are largely unknown. In this study, aquatic model animals, such as rotifers (Brachionus calyciflorus and B. plicatilis), water fleas (Daphnia magna), amphipods (Hyalella azteca), polychaetes (Perinereis aibuhitensis), and zebrafish (Danio rerio) were exposed to environmental concentrations (1, 10, and 100 particles L-1) of 1 μm polystyrene MPs alone, Cr(VI) alone, or Cr(VI) combined with MPs. Following exposure, the potential effects were measured by analyzing basic life endpoints (e.g., survival rate and growth). A significant response to MPs alone was not observed in all animals. However, MPs combined with Cr(VI) concentration-dependently increased Cr(VI) toxicity in two rotifer species. The survival rate of water fleas was significantly reduced upon exposure to Cr(VI) + MPs (100 particles L-1) compared with exposure to Cr(VI) alone, and significantly decreased the number of offspring. Although there was no significant effect on the body length of the amphipod, concentration-dependent decreases in their survival rates were observed. In contrast, no significant change was found in the survival rate of polychaetes; however, their burrowing ability was inhibited by Cr(VI) + MPs (100 particles L-1). Further, larval mortality was increased in response to Cr(VI) + MPs (100 particles L-1) in zebrafish. Taken together, the findings suggest that MPs can exacerbate Cr(VI) toxicity, even at environmental levels.


Polystyrene Nanoplastics in Aquatic Microenvironments Affect Sperm Metabolism and Fertilization of Mytilus galloprovincialis (Lamark, 1819).

  • Martina Contino‎ et al.
  • Toxics‎
  • 2023‎

The continuous and unregulated discharge of wastes and pollutants into the aquatic environment has required constant monitoring of the risks incurred by aquatic ecosystems. Alarmism arises from plastic pollution as larger artifacts release nanoscale fragments that can contact free-living stages such as gametes, embryos, and larvae. Specifically, the interaction between spermatozoa, released in water in externally fertilizing species, and the surrounding microenvironment is essential for successful fertilization. Activation and kinematics of movement, proper maintenance of ionic balance, and chemotactism are processes highly sensitive to even minimal perturbations caused by pollutants such as polystyrene nanoplastics. Spermatozoa of Mytilus galloprovincialis (M. galloprovincialis), an excellent ecotoxicological model, undergo structural (plasma membrane ruptures, DNA damage) and metabolic (reduced motility, fertilizing capacity) damage upon exposure to 50 nm amino-modified polystyrene nanoplastics (nPS-NH2). Nanoplastics of larger diameter (100 nm) did not affect sperm parameters. The findings highlighted the negative impact that plastic pollution, related to nanoparticle diameter and concentration, could have on sperm quality and reproductive potential of organisms, altering the equilibrium of aquatic ecosystems.


The Potential Risk of Electronic Waste Disposal into Aquatic Media: The Case of Personal Computer Motherboards.

  • Georgios Kalamaras‎ et al.
  • Toxics‎
  • 2021‎

Considering that electronic wastes (e-wastes) have been recently recognized as a potent environmental and human threat, the present study aimed to assess the potential risk of personal computer motherboards (PCMBs) leaching into aquatic media, following a real-life scenario. Specifically, PCMBs were submerged for 30 days in both distilled water (DW) and artificial seawater (ASW). Afterwards, PCMBs leachates were chemically characterized (i.e., total organic carbon, ions, and trace elements) and finally used (a) for culturing freshwater (Chlorococcum sp. and Scenedesmus rubescens) and saltwater (Dunaliella tertiolecta and Tisochrysis lutea) microalgae for 10 days (240 h), (b) as the exposure medium for mussel Mytilus galloprovincialis (96 h exposure), and (c) for performing the Cytokinesis Block Micronucleus (CBMN) assay in human lymphocytes cultures. According to the results, PCMBs could mediate both fresh- and marine algae growth rates over time, thus enhancing the cytotoxic, oxidative, and genotoxic effects in the hemocytes of mussels (in terms of lysosomal membrane impairment, lipid peroxidation, and NO content and micronuclei formation, respectively), as well as human lymphocytes (in terms of MN formation and CBPI values, respectively). The current findings clearly revealed that PCMBs leaching into the aquatic media could pose detrimental effects on both aquatic organisms and human cells.


Pesticides and Parabens Contaminating Aquatic Environment: Acute and Sub-Chronic Toxicity towards Early-Life Stages of Freshwater Fish and Amphibians.

  • Denisa Medkova‎ et al.
  • Toxics‎
  • 2023‎

Pesticides and personal care products are two very important groups of contaminants posing a threat to the aquatic environment and the organisms living in it.. Therefore, this study aimed to describe the effects of widely used pesticides and parabens on aquatic non-target biota such as fish (using model organisms Danio rerio and Cyprinus carpio) and amphibians (using model organism Xenopus laevis) using a wide range of endpoints. The first part of the experiment was focused on the embryonal toxicity of three widely used pesticides (metazachlor, prochloraz, and 4-chloro-2-methyl phenoxy acetic acid) and three parabens (methylparaben, propylparaben, and butylparaben) with D. rerio, C. carpio, and X. laevis embryos. An emphasis was placed on using mostly sub-lethal concentrations that are partially relevant to the environmental concentrations of the substances studied. In the second part of the study, an embryo-larval toxicity test with C. carpio was carried out with prochloraz using concentrations 0.1, 1, 10, 100, and 1000 µg/L. The results of both parts of the study show that even the low, environmentally relevant concentrations of the chemicals tested are often able to affect the expression of genes that play either a prominent role in detoxification and sex hormone production or indicate cell stress or, in case of prochloraz, to induce genotoxicity.


A Metabolomic Approach to Assess the Toxicity of the Olive Tree Endophyte Bacillus sp. PTA13 Lipopeptides to the Aquatic Macrophyte Lemna minor L.

  • Evgenia-Anna Papadopoulou‎ et al.
  • Toxics‎
  • 2022‎

Pesticides represent a major human input into the ecosystem, posing a serious risk to non-target organisms. Therefore, there is pressure toward the reduction in their use and the discovery of alternative sources of bioactivity. Endophytic microorganisms represent a source of bioactivity, whose potential for plant protection has been recently established. In this context, an olive tree endophytic Bacillus sp. was isolated, exhibiting superior antifungal activity, mainly attributed to its major surfactin, iturin, and fengycin and the minor gageotetrin and bacilotetrin groups of lipopeptides (LP). Based on the potential of LP and the lack of information on their toxicity to aquatic organisms, we have investigated the toxicity of an LP extract to the model macrophyte Lemna minor L. The extract exhibited low phytotoxicity (EC50 = 419 μg·mL-1), and for the investigation of its effect on the plant, GC/EI/MS metabolomics was applied following exposure to sub-lethal doses (EC25 and EC50). Results revealed a general disturbance of plants' biosynthetic capacity in response to LP treatments, with substantial effect on the amino acid pool and the defense mechanism regulated by jasmonate. There are no previous reports on the phytotoxicity of LP to L. minor, with evidence supporting their improved toxicological profile and potential in plant protection.


Relationship between Pesticide Standards for Classification of Water Bodies and Ecotoxicity: A Case Study of the Brazilian Directive.

  • Esmeralda Pereira de Araújo‎ et al.
  • Toxics‎
  • 2022‎

The objective of this study was to evaluate if the maximum values (MVs) for pesticides in surface freshwater included in CONAMA directive 357/2005 are safe for aquatic biota, comparing them with ecotoxicology data published in the literature. The terms "aquatic toxicity", "chronic" "acute", "LC50", "EC50", "NOEL", "NOEC" and the name of each pesticide were used for searches on the research platforms. Data from 534 tests reported in 37 published articles and three ecotoxicological databases were included in this study; 24% of the tests were carried out with producer organisms, 34% with primary consumers and 42% with secondary consumers. Microcrustaceans of the Daphnia genus and the fishes Pimephales promelas and Oncorhynchus mykiss were the organisms most used. Atrazine, alachlor and metolachlor were the most investigated pesticides. Atrazine and alachlor are approved in Brazil, with atrazine ranking fourth among the most used pesticides in the country. The results indicated that of the 27 pesticides included in the standard directive, 17 have a risk quotient (RQ) higher than the level of concern for at least one ecotoxicological parameter and may not protect the aquatic biota. The insecticide malathion, used in various agricultural crops in Brazil, was the one that presented the highest RQs (3125 and 3,125,000 for freshwaters classified as 1/2 and 3, respectively), related to a LC50 (96 h) of 0.000032 µg/L in Chironomus ramosus. The results indicate that CONAMA directive 357/2005 should be updated in line with the current use of pesticides in the country, and the MVs should be re-evaluated so that they do not represent toxicity for the aquatic biota.


Effects of Metamifop on Defense Systems in Monopterus albus.

  • Tianyu Guan‎ et al.
  • Toxics‎
  • 2023‎

The effects of herbicides on non-target organisms in paddy fields have become a popular research topic. As a widely used herbicide, it is necessary to explore the potential toxicity of metamifop in non-target organisms, especially aquatic animals, in co-culture mode. In the present study, we evaluated the effects of metamifop (0, 0.2, 0.4, 0.6, and 0.8 mg/L) on the defense system (antioxidation, immunity, and apoptosis) in Monopterus albus. Reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and protein carbonylation (PCO) increased significantly (p < 0.05) with the increasing metamifop concentration, resulting in oxidative damage. In the antioxidant system, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly (p < 0.05) in the 0.2 mg/L treatment group compared with the control group, and decreased in 0.4, 0.6, and 0.8 mg/L treatment groups. Glutathione peroxidase (GPX) activity decreased significantly (p < 0.05) with the increasing metamifop concentration. In the immune system, white cell number (WCN) increased significantly (p < 0.05) in 0.2 mg/L treatment group, and then decreased with the increase in metamifop concentration. Compared with control group, acid phosphatase (ACP) activity not only increased significantly (p < 0.05) in 0.2 mg/L treatment group, but also decreased significantly (p < 0.05) compared with the increase in metamifop concentration. However, in all treatment groups, alkaline phosphatase (AKP) activity was significantly lower than that in the control group (p < 0.05). In the inflammatory response, TNF-α and IL-1β expression levels in the NF-κB signaling pathway decreased significantly (p < 0.05) with the increase in metamifop concentration, while IL-8 expression level in the same signaling pathway increased significantly (p < 0.05) in treatment groups. The expression levels of genes related to apoptosis showed that apoptosis was promoted after exposure to metamifop. The results of the present study show that metamifop induced oxidative damage via a high level of ROS production, and then inhibited or damaged the defense systems of M. albus.


Effect of 10 UV Filters on the Brine Shrimp Artemia salina and the Marine Microalga Tetraselmis sp.

  • Evane Thorel‎ et al.
  • Toxics‎
  • 2020‎

The presence of pharmaceutical and personal care product (PPCP) residues in the aquatic environment is an emerging issue due to their uncontrolled release through gray water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), 2-ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS) and octocrylene (OC) on marine organisms from two major trophic levels, including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, results showed that both HS and OC were the most toxic UV filters for our tested species, followed by a significant effect of BM on Artemia salina due to BM-but only at high concentrations (1 mg/L). ES, BP3 and DHHB affected the metabolic activity of the microalgae at 100 µg/L. BEMT, DBT, ET, MBBT had no effect on the tested organisms, even at high concentrations (2 mg/L). OC toxicity represents a risk for those species, since concentrations used in this study are 15-90 times greater than those reported in occurrence studies for aquatic environments. For the first time in the literature, we report HS toxicity on a microalgae species at concentrations complementing those found in aquatic environments. These preliminary results could represent a risk in the future if concentrations of OC and HS continue to increase.


Transformation Products of Emerging Pollutants Explored Using Non-Target Screening: Perspective in the Transformation Pathway and Toxicity Mechanism-A Review.

  • Thodhal-Yoganandham Suman‎ et al.
  • Toxics‎
  • 2022‎

The scientific community has increasingly focused on forming transformation products (TPs) from environmental organic pollutants. However, there is still a lot of discussion over how these TPs are generated and how harmful they are to living terrestrial or aquatic organisms. Potential transformation pathways, TP toxicity, and their mechanisms require more investigation. Non-target screening (NTS) via high-resolution mass spectrometry (HRMS) in model organisms to identify TPs and the formation mechanism on various organisms is the focus of this review. Furthermore, uptake, accumulation process, and potential toxicity with their detrimental consequences are summarized in various organisms. Finally, challenges and future research initiatives, such as performing NTS in a model organism, characterizing and quantifying TPs, and evaluating future toxicity studies on TPs, are also included in this review.


Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos.

  • Tianyi Chen‎ et al.
  • Toxics‎
  • 2023‎

Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.


Effects of Two Antiretroviral Drugs on the Crustacean Daphnia magna in River Water.

  • Ntombikayise Mahaye‎ et al.
  • Toxics‎
  • 2022‎

Antiretroviral (ARVs) drugs are used to manage the human immunodeficiency virus (HIV) disease and are increasingly being detected in the aquatic environment. However, little is known about their effects on non-target aquatic organisms. Here, Daphnia magna neonates were exposed to Efavirenz (EFV) and Tenofovir (TFV) ARVs at 62.5-1000 µg/L for 48 h in river water. The endpoints assessed were mortality, immobilization, and biochemical biomarkers (catalase (CAT), glutathione S-transferase (GST), and malondialdehyde (MDA)). No mortality was observed over 48 h. Concentration- and time-dependent immobilization was observed for both ARVs only at 250-1000 µg/L after 48 h, with significant immobilization observed for EFV compared to TFV. Results for biochemical responses demonstrated that both ARVs induced significant changes in CAT and GST activities, and MDA levels, with effects higher for EFV compared to TFV. Biochemical responses were indicative of oxidative stress alterations. Hence, both ARVs could potentially be toxic to D. magna.


Immunotoxicity and Transcriptome Analyses of Zebrafish (Danio rerio) Embryos Exposed to 6:2 FTSA.

  • Jing Zhang‎ et al.
  • Toxics‎
  • 2023‎

As a new alternative to perfluorooctane sulfonic acid (PFOS), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) has been widely produced and used in recent years, and its concentration and frequency of detection in the aquatic environment and aquatic organisms are increasing. However, studies of its toxicity in aquatic biological systems are alarmingly scarce, and the relevant toxicological information needs to be improved. In this study, we investigated AB wild-type zebrafish (Danio rerio) embryos subjected to acute 6:2 FTSA exposure for immunotoxicity using immunoassays and transcriptomics. Immune indexes showed significant decreases in SOD and LZM activities, but no significant change in NO content. Other indexes (TNOS, iNOS, ACP, AKP activities, and MDA, IL-1β, TNF-α, NF-κB, TLR4 content) all showed significant increases. These results indicated that 6:2 FTSA induced oxidative stress and inflammatory responses in zebrafish embryos and exhibited immunotoxicity. Consistently, transcriptomics showed that genes involved in the MAPK, TLR and NOD-like receptor signaling pathways (hsp70, hsp701, stat1b, irf3, cxcl8b, map3k8, il1b, tnfa and nfkb) were significantly upregulated after 6:2 FTSA exposure, suggesting that 6:2 FTSA might induce immunotoxicity in zebrafish embryos through the TLR/NOD-MAPK pathway. The results of this study indicate that the safety of 6:2 FTSA should be examined further.


Screening of a Novel Solvent for Optimum Extraction of Anionic Surfactants in Water.

  • Jung-Hwan Yoon‎ et al.
  • Toxics‎
  • 2022‎

Anionic surfactants (AS) are detrimental aquatic pollutants due to their well-characterized toxicity to aquatic organisms. The concentration of AS in aquatic environments is increasing because of their extensive use in many industries and households. The standard reference method for AS analysis is to determine a methylene blue active substance (MBAS) complex formed between AS and the methylene blue (MB) cation by using chloroform. However, chloroform has a low AS extraction efficiency and other limiting properties, such as a high density and volatility, which make the conventional AS analytical method time-consuming and labor-intensive. In an effort to replace the use of chloroform, this study was carried out to screen novel solvents for their ability to extract AS in water samples. Criteria were based on AS extraction efficiency, physicochemical properties, and the stability of the solvent under different environmental conditions. Organic solvents, such as methyl isobutyl ketone (MIBK), 1,2-dichloroethane (DCE), dichloromethane, benzene, and n-hexane, were assessed. In extraction of the anionic surfactant sodium dodecyl sulfate (SDS), the mixture of MIBK-DCE (3:1) proved to be an optimum solvent as an alternative to chloroform. It not only enhanced SDS extractability but also improved properties, such as having a lower volatility, a lower density than water, and a quicker phase separation. Among solvents screened, no one single solvent in SDS extraction could meet such criteria. The performance of the MIBK-DCE (3:1) mixture in SDS extraction was stable, irrespective of pH and ionic strength of the SDS solution, washing process, and presence of cations. Anionic interference from halogen and polyatomic and organic anions in SDS extraction by MIBK-DCE (3:1) existed only at an elevated concentration, which is not occurring in the natural aquatic environment. Results demonstrated that a MIBK-DCE (3:1) mixture solvent could be used in AS analysis for a wide range of aquatic samples and it could be the basis for the development of a new analytical method to replace conventional chloroform.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: