Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Conserved Transcription Factors Steer Growth-Related Genomic Programs in Daphnia.

  • Katina I Spanier‎ et al.
  • Genome biology and evolution‎
  • 2017‎

Ecological genomics aims to understand the functional association between environmental gradients and the genes underlying adaptive traits. Many genes that are identified by genome-wide screening in ecologically relevant species lack functional annotations. Although gene functions can be inferred from sequence homology, such approaches have limited power. Here, we introduce ecological regulatory genomics by presenting an ontology-free gene prioritization method. Specifically, our method combines transcriptome profiling with high-throughput cis-regulatory sequence analysis in the water fleas Daphnia pulex and Daphnia magna. It screens coexpressed genes for overrepresented DNA motifs that serve as transcription factor binding sites, thereby providing insight into conserved transcription factors and gene regulatory networks shaping the expression profile. We first validated our method, called Daphnia-cisTarget, on a D. pulex heat shock data set, which revealed a network driven by the heat shock factor. Next, we performed RNA-Seq in D. magna exposed to the cyanobacterium Microcystis aeruginosa. Daphnia-cisTarget identified coregulated gene networks that associate with the moulting cycle and potentially regulate life history changes in growth rate and age at maturity. These networks are predicted to be regulated by evolutionary conserved transcription factors such as the homologues of Drosophila Shavenbaby and Grainyhead, nuclear receptors, and a GATA family member. In conclusion, our approach allows prioritising candidate genes in Daphnia without bias towards prior knowledge about functional gene annotation and represents an important step towards exploring the molecular mechanisms of ecological responses in organisms with poorly annotated genomes.


How to maximally support local and regional biodiversity in applied conservation? Insights from pond management.

  • Pieter Lemmens‎ et al.
  • PloS one‎
  • 2013‎

Biodiversity and nature values in anthropogenic landscapes often depend on land use practices and management. Evaluations of the association between management and biodiversity remain, however, comparatively scarce, especially in aquatic systems. Furthermore, studies also tend to focus on a limited set of organism groups at the local scale, whereas a multi-group approach at the landscape scale is to be preferred. This study aims to investigate the effect of pond management on the diversity of multiple aquatic organism groups (e.g. phytoplankton, zooplankton, several groups of macro-invertebrates, submerged and emergent macrophytes) at local and regional spatial scales. For this purpose, we performed a field study of 39 shallow man-made ponds representing five different management types. Our results indicate that fish stock management and periodic pond drainage are crucial drivers of pond biodiversity. Furthermore, this study provides insight in how the management of eutrophied ponds can contribute to aquatic biodiversity. A combination of regular draining of ponds with efforts to keep ponds free of fish seems to be highly beneficial for the biodiversity of many groups of aquatic organisms at local and regional scales. Regular draining combined with a stocking of fish at low biomass is also preferable to infrequent draining and lack of fish stock control. These insights are essential for the development of conservation programs that aim long-term maintenance of regional biodiversity in pond areas across Europe.


Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors.

  • Luisa Orsini‎ et al.
  • Scientific data‎
  • 2016‎

The full exploration of gene-environment interactions requires model organisms with well-characterized ecological interactions in their natural environment, manipulability in the laboratory and genomic tools. The waterflea Daphnia magna is an established ecological and toxicological model species, central to the food webs of freshwater lentic habitats and sentinel for water quality. Its tractability and cyclic parthenogenetic life-cycle are ideal to investigate links between genes and the environment. Capitalizing on this unique model system, the STRESSFLEA consortium generated a comprehensive RNA-Seq data set by exposing two inbred genotypes of D. magna and a recombinant cross of these genotypes to a range of environmental perturbations. Gene models were constructed from the transcriptome data and mapped onto the draft genome of D. magna using EvidentialGene. The transcriptome data generated here, together with the available draft genome sequence of D. magna and a high-density genetic map will be a key asset for future investigations in environmental genomics.


Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria.

  • Emilie Macke‎ et al.
  • Nature communications‎
  • 2017‎

The gut microbiota impacts many aspects of its host's biology, and is increasingly considered as a key factor mediating performance of host individuals in continuously changing environments. Here we use gut microbiota transplants to show that both host genotype and gut microbiota mediate tolerance to toxic cyanobacteria in the freshwater crustacean Daphnia magna. Interclonal variation in tolerance to cyanobacteria disappears when Daphnia are made germ-free and inoculated with an identical microbial inoculum. Instead, variation in tolerance among recipient Daphnia mirrors that of the microbiota donors. Metagenetic analyses point to host genotype and external microbial source as important determinants of gut microbiota assembly, and reveal strong differences in gut microbiota composition between tolerant and susceptible genotypes. Together, these results show that both environmentally and host genotype-induced variations in gut microbiota structure mediate Daphnia tolerance to toxic cyanobacteria, pointing to the gut microbiota as a driver of adaptation and acclimatization to cyanobacterial harmful algal blooms in zooplankton.


Rapid evolution in response to warming does not affect the toxicity of a pollutant: Insights from experimental evolution in heated mesocosms.

  • Chao Zhang‎ et al.
  • Evolutionary applications‎
  • 2019‎

While human-induced stressors such as warming and pollutants may co-occur and interact, evolutionary studies typically focus on single stressors. Rapid thermal evolution may help organisms better deal with warming, yet it remains an open question whether thermal evolution changes the toxicity of pollutants under warming. We investigated the effects of exposure to a novel pollutant (zinc oxide nanoparticles, nZnO) and 4°C warming (20°C vs. 24°C) on key life history and physiological traits of the water flea Daphnia magna, a keystone species in aquatic ecosystems. To address the role of thermal evolution, we compared these effects between clones from an experimental evolution trial where animals were kept for two years in outdoor mesocosms at ambient temperatures or ambient +4°C. The nZnO was more toxic at 20°C than at 24°C: only at 20°C, it caused reductions in early fecundity, intrinsic growth rate and metabolic activity. This was due to a higher accumulated zinc burden at 20°C than at 24°C, which was associated with an upregulation of a metallothionein gene at 20°C but not at 24°C. Clones from the heated mesocosms better dealt with warming than clones from the ambient mesocosms, indicating rapid thermal evolution. Notably, rapid thermal evolution did not change the toxicity of nZnO, neither at 20°C nor at 24°C, suggesting no pleiotropy or metabolic trade-offs were at work under the current experimental design. Evaluating whether thermal evolution influences the toxicity of pollutants is important for ecological risk assessment. It provides key information to extrapolate laboratory-derived toxicity estimates of pollutants both in space to warmer regions and in time under future global warming scenarios. In general, studying how the evolution of tolerance to one anthropogenic stressor influence tolerance to other anthropogenic stressors should get more attention in a rapidly changing world where animals increasingly face combinations of stressors.


Adaptive and non-adaptive divergence in a common landscape.

  • Joost A M Raeymaekers‎ et al.
  • Nature communications‎
  • 2017‎

Species in a common landscape often face similar selective environments. The capacity of organisms to adapt to these environments may be largely species specific. Quantifying shared and unique adaptive responses across species within landscapes may thus improve our understanding of landscape-moderated biodiversity patterns. Here we test to what extent populations of two coexisting and phylogenetically related fishes-three-spined and nine-spined stickleback-differ in the strength and nature of neutral and adaptive divergence along a salinity gradient. Phenotypic differentiation, neutral genetic differentiation and genomic signatures of adaptation are stronger in the three-spined stickleback. Yet, both species show substantial phenotypic parallelism. In contrast, genomic signatures of adaptation involve different genomic regions, and are thus non-parallel. The relative contribution of spatial and environmental drivers of population divergence in each species reflects different strategies for persistence in the same landscape. These results provide insight in the mechanisms underlying variation in evolutionary versatility and ecological success among species within landscapes.The three-spined stickleback is a model species for the study of adaptive divergence. Here, Raeymaekers et al. compare how the three-spined stickleback and its relative the nine-spined stickleback vary at the phenotypic and genomic levels in response to the same spatial and environmental drivers.


Evolution at two time frames: Polymorphisms from an ancient singular divergence event fuel contemporary parallel evolution.

  • Steven M Van Belleghem‎ et al.
  • PLoS genetics‎
  • 2018‎

When environments change, populations may adapt surprisingly fast, repeatedly and even at microgeographic scales. There is increasing evidence that such cases of rapid parallel evolution are fueled by standing genetic variation, but the source of this genetic variation remains poorly understood. In the saltmarsh beetle Pogonus chalceus, short-winged 'tidal' and long-winged 'seasonal' ecotypes have diverged in response to contrasting hydrological regimes and can be repeatedly found along the Atlantic European coast. By analyzing genomic variation across the beetles' distribution, we reveal that alleles selected in the tidal ecotype are spread across the genome and evolved during a singular and, likely, geographically isolated divergence event, within the last 190 Kya. Due to subsequent admixture, the ancient and differentially selected alleles are currently polymorphic in most populations across its range, which could potentially allow for the fast evolution of one ecotype from a small number of random individuals, as low as 5 to 15, from a population of the other ecotype. Our results suggest that cases of fast parallel ecological divergence can be the result of evolution at two different time frames: divergence in the past, followed by repeated selection on the same divergently evolved alleles after admixture. These findings highlight the importance of an ancient and, likely, allopatric divergence event for driving the rate and direction of contemporary fast evolution under gene flow. This mechanism is potentially driven by periods of geographic isolation imposed by large-scale environmental changes such as glacial cycles.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: