Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Fluorescence depolarization dynamics of ionic strength sensors using time-resolved anisotropy.

  • Cody P Aplin‎ et al.
  • Biophysical journal‎
  • 2021‎

Eukaryotic cells exploit dynamic and compartmentalized ionic strength to impact a myriad of biological functions such as enzyme activities, protein-protein interactions, and catalytic functions. Herein, we investigated the fluorescence depolarization dynamics of recently developed ionic strength biosensors (mCerulean3-linker-mCitrine) in Hofmeister salt (KCl, NaCl, NaI, and Na2SO4) solutions. The mCerulean3-mCitrine acts as a Förster resonance energy transfer (FRET) pair, tethered together by two oppositely charged α-helices in the linker region. We developed a time-resolved fluorescence depolarization anisotropy approach for FRET analyses, in which the donor (mCerulean3) is excited by 425-nm laser pulses, followed by fluorescence depolarization analysis of the acceptor (mCitrine) in KE (lysine-glutamate), arginine-aspartate, and arginine-glutamate ionic strength sensors with variable amino acid sequences. Similar experiments were carried out on the cleaved sensors as well as an E6G2 construct, which has neutral α-helices in the linker region, as a control. Our results show distinct dynamics of the intact and cleaved sensors. Importantly, the FRET efficiency decreases and the donor-acceptor distance increases as the environmental ionic strength increases. Our chemical equilibrium analyses of the collapsed-to-stretched conformational state transition of KE reveal that the corresponding equilibrium constant and standard Gibbs free energy changes are ionic strength dependent. We also tested the existing theoretical models for FRET analyses using steady-state anisotropy, which reveal that the angle between the dipole moments of the donor and acceptor in the KE sensor are sensitive to the ionic strength. These results help establish the time-resolved depolarization dynamics of these genetically encoded donor-acceptor pairs as a quantitative means for FRET analysis, which complement traditional methods such as time-resolved fluorescence for future in vivo studies.


Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy.

  • Philipp J Heckmeier‎ et al.
  • Biophysical journal‎
  • 2020‎

A large fraction of soluble and membrane-bound proteins exists as non-covalent dimers, trimers, and higher-order oligomers. The experimental determination of the oligomeric state or stoichiometry of proteins remains a nontrivial challenge. In one approach, the protein of interest is genetically fused to green fluorescent protein (GFP). If a fusion protein assembles into a non-covalent oligomeric complex, exciting their GFP moiety with polarized fluorescent light elicits homotypic Förster resonance energy transfer (homo-FRET), in which the emitted radiation is partially depolarized. Fluorescence depolarization is associated with a decrease in fluorescence anisotropy that can be exploited to calculate the oligomeric state. In a classical approach, several parameters obtained through time-resolved and steady-state anisotropy measurements are required for determining the stoichiometry of the oligomers. Here, we examined novel approaches in which time-resolved measurements of reference proteins provide the parameters that can be used to interpret the less expensive steady-state anisotropy data of candidates. In one approach, we find that using average homo-FRET rates (kFRET), average fluorescence lifetimes (τ), and average anisotropies of those fluorophores that are indirectly excited by homo-FRET (rET) do not compromise the accuracy of calculated stoichiometries. In the other approach, fractional photobleaching of reference oligomers provides a novel parameter a whose dependence on stoichiometry allows one to quantitatively interpret the increase of fluorescence anisotropy seen after photobleaching the candidates. These methods can at least reliably distinguish monomers from dimers and trimers.


Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment.

  • Jonathan V Rocheleau‎ et al.
  • Biophysical journal‎
  • 2003‎

Fluorescence anisotropy measurements can elucidate the microenvironment of a membrane protein in terms of its rotational diffusion, interactions, and proximity to other proteins. However, use of this approach requires a fluorescent probe that is rigidly attached to the protein of interest. Here we describe the use of one such probe, a green fluorescent protein (GFP) expressed and rigidly held within the amino acid sequence of a major histocompatibility complex (MHC) class I molecule, H2L(d). We contrast the anisotropy of this GFP-tagged MHC molecule, H2L(d)GFPout, with that of an H2L(d) that was GFP-tagged at its C-terminus, H2L(d)GFPin. Both molecules fold properly, reach the cell surface, and are recognized by specific antibodies and T-cell receptors. We found that polarized fluorescence images of H2L(d)GFPout in plasma membrane blebs show intensity variations that depend on the relative orientation of the polarizers and the membrane normal, thus demonstrating that the GFP is oriented with respect to the membrane. These variations were not seen for H2L(d)GFPin. Before transport to the membrane surface, MHC class I associates with the transporter associated with antigen processing complex in the endoplasmic reticulum. The intensity-dependent steady-state anisotropy in the ER of H2L(d)GFPout was consistent with FRET homotransfer, which indicates that a significant fraction of these molecules were clustered. After MCMV-peptide loading, which supplies antigenic peptide to the MHC class I releasing it from the antigen processing complex, the anisotropy of H2L(d)GFPout was independent of intensity, suggesting that the MHC proteins were no longer clustered. These results demonstrate the feasibility and usefulness of a GFP moiety rigidly attached to the protein of interest as a probe for molecular motion and proximity in cell membranes.


Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy.

  • Oleg V Aslanidi‎ et al.
  • Biophysical journal‎
  • 2009‎

Experimental evidence suggests that regional differences in action potential (AP) morphology can provide a substrate for initiation and maintenance of reentrant arrhythmias in the right atrium (RA), but the relationships between the complex electrophysiological and anatomical organization of the RA and the genesis of reentry are unclear. In this study, a biophysically detailed three-dimensional computer model of the right atrial tissue was constructed to study the role of tissue heterogeneity and anisotropy in arrhythmogenesis. The model of Lindblad et al. for a rabbit atrial cell was modified to incorporate experimental data on regional differences in several ionic currents (primarily, I(Na), I(CaL), I(K1), I(to), and I(sus)) between the crista terminalis and pectinate muscle cells. The modified model was validated by its ability to reproduce the AP properties measured experimentally. The anatomical model of the rabbit RA (including tissue geometry and fiber orientation) was based on a recent histological reconstruction. Simulations with the resultant electrophysiologically and anatomically detailed three-dimensional model show that complex organization of the RA tissue causes breakdown of regular AP conduction patterns at high pacing rates (>11.75 Hz): as the AP in the crista terminalis cells is longer, and electrotonic coupling transverse to fibers of the crista terminalis is weak, high-frequency pacing at the border between the crista terminalis and pectinate muscles results in a unidirectional conduction block toward the crista terminalis and generation of reentry. Contributions of the tissue heterogeneity and anisotropy to reentry initiation mechanisms are quantified by measuring action potential duration (APD) gradients at the border between the crista terminalis and pectinate muscles: the APD gradients are high in areas where both heterogeneity and anisotropy are high, such that intrinsic APD differences are not diminished by electrotonic interactions. Thus, our detailed computer model reconstructs complex electrical activity in the RA, and provides new insights into the mechanisms of transition from focal atrial tachycardia into reentry.


Investigation of N-Terminal Phospho-Regulation of Uracil DNA Glycosylase Using Protein Semisynthesis.

  • Brian P Weiser‎ et al.
  • Biophysical journal‎
  • 2017‎

Uracil DNA Glycosylase (UNG2) is the primary enzyme in humans that prevents the stable incorporation of deoxyuridine monophosphate into DNA in the form of U/A basepairs. During S-phase, UNG2 remains associated with the replication fork through its interactions with two proteins, Proliferating Cell Nuclear Antigen (PCNA) and Replication Protein A (RPA), which are critical for DNA replication and repair. In this work, we used protein semisynthesis and fluorescence anisotropy assays to explore the interactions of UNG2 with PCNA and RPA and to determine the effects of two UNG2 phosphorylation sites (Thr6 and Tyr8) located within its PCNA-interacting motif (PIP-box). In binding assays, we found that phosphorylation of Thr6 or Tyr8 on UNG2 can impede PCNA binding without affecting UNG2 catalytic activity or its RPA interaction. Our data also suggests that unmodified UNG2, PCNA, and RPA can form a ternary protein complex. We propose that the UNG2 N-terminus may serve as a flexible scaffold to tether PCNA and RPA at the replication fork, and that post-translational modifications on the UNG2 N-terminus disrupt formation of the PCNA-UNG2-RPA protein complex.


Deciphering CaMKII Multimerization Using Fluorescence Correlation Spectroscopy and Homo-FRET Analysis.

  • Pabak Sarkar‎ et al.
  • Biophysical journal‎
  • 2017‎

While kinases are typically composed of one or two subunits, calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is composed of 8-14 subunits arranged as pairs around a central core. It is not clear if the CaMKII holoenzyme functions as an assembly of independent subunits, as catalytic pairs, or as a single unit. One strategy to address this question is to genetically engineer monomeric and dimeric CaMKII and evaluate how their activity compares to the wild-type (WT) holoenzyme. Here a technique that combines fluorescence correlation spectroscopy and homo-FRET analysis was used to characterize assembly mutants of Venus-tagged CaMKIIα to identify a dimeric CaMKII. Spectroscopy was then used to compare how holoenzyme structure and function changes in response to activation with CaM in the dimeric mutant, WT-holoenzyme, and a monomeric CaMKII oligomerization-domain deletion mutant control. CaM triggered an increase in hydrodynamic volume in both WT and dimeric CaMKII without altering subunit stoichiometry or the net homo-FRET between Venus-tagged catalytic domains. Biochemical analysis revealed that the dimeric mutant also functioned like WT holoenzyme in terms of its kinase activity with an exogenous substrate, and for endogenous T286 autophosphorylation. We conclude that the fundamental functional units of CaMKII holoenzyme are paired catalytic-domains.


Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer.

  • S M Blackman‎ et al.
  • Biophysical journal‎
  • 1998‎

The oligomeric state of the erythrocyte anion exchange protein, band 3, has been assayed by resonance energy homotransfer. Homotransfer between oligomeric subunits, labeled with eosin-5-maleimide at Lys430 in the transmembrane domain, has been demonstrated by steady-state and time-resolved fluorescence spectroscopy, and is readily observed by its depolarization of the eosin fluorescence. Polarized fluorescence measurements of HPLC-purified band 3 oligomers indicate that eosin homotransfer increases progressively with increasing species size. This shows that homotransfer also occurs between labeled band 3 dimers as well as within the dimers, making fluorescence anisotropy measurements sensitive to band 3 self-association. Treatment of ghost membranes with either Zn2+ or melittin, agents that cluster band 3, significantly decreases the anisotropy as a result of the increased homotransfer within the band 3 clusters. By comparison with the anisotropy of species of known oligomeric state, the anisotropy of erythrocyte ghost membranes at 37 degrees C is consistent with dimeric and/or tetrameric band 3, and does not require postulation of a fraction of large clusters. Proteolytic removal of the cytoplasmic domain of band 3, which significantly increases the rotational mobility of the transmembrane domain, does not affect its oligomeric state, as reported by eosin homotransfer. These results support a model in which interaction with the membrane skeleton restricts the mobility of band 3 without significantly altering its self-association state.


Quantitative interpretation of FRET experiments via molecular simulation: force field and validation.

  • Robert B Best‎ et al.
  • Biophysical journal‎
  • 2015‎

Molecular simulation is a valuable and complementary tool that may assist with the interpretation of single-molecule Förster resonance energy transfer (FRET) experiments, if the energy function is of sufficiently high quality. Here we present force-field parameters for one of the most common pairs of chromophores used in experiments, AlexaFluor 488 and 594. From microsecond molecular-dynamics simulations, we are able to recover both experimentally determined equilibrium constants and association/dissociation rates of the chromophores with free tryptophan, as well as the decay of fluorescence anisotropy of a labeled protein. We find that it is particularly important to obtain a correct balance of solute-water interactions in the simulations in order to faithfully capture the experimental anisotropy decays, which provide a sensitive benchmark for fluorophore mobility. Lastly, by a combination of experiment and simulation, we address a potential complication in the interpretation of experiments on polyproline, used as a molecular ruler for FRET experiments, namely the potential association of one of the chromophores with the polyproline helix. Under conditions where simulations accurately capture the fluorescence anisotropy decay, we find at most a modest, transient population of conformations in which the chromophores associate with the polyproline. Explicit calculation of FRET transfer efficiencies for short polyprolines yields results in good agreement with experiment. These results illustrate the potential power of a combination of molecular simulation and experiment in quantifying biomolecular dynamics.


Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order.

  • Max Lönnfors‎ et al.
  • Biophysical journal‎
  • 2011‎

The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.


Characterization of horizontal lipid bilayers as a model system to study lipid phase separation.

  • Alf Honigmann‎ et al.
  • Biophysical journal‎
  • 2010‎

Artificial lipid membranes are widely used as a model system to study single ion channel activity using electrophysiological techniques. In this study, we characterize the properties of the artificial bilayer system with respect to its dynamics of lipid phase separation using single-molecule fluorescence fluctuation and electrophysiological techniques. We determined the rotational motions of fluorescently labeled lipids on the nanosecond timescale using confocal time-resolved anisotropy to probe the microscopic viscosity of the membrane. Simultaneously, long-range mobility was investigated by the lateral diffusion of the lipids using fluorescence correlation spectroscopy. Depending on the solvent used for membrane preparation, lateral diffusion coefficients in the range D(lat) = 10-25 mum(2)/s and rotational diffusion coefficients ranging from D(rot) = 2.8 - 1.4 x 10(7) s(-1) were measured in pure liquid-disordered (L(d)) membranes. In ternary mixtures containing saturated and unsaturated phospholipids and cholesterol, liquid-ordered (L(o)) domains segregated from the L(d) phase at 23 degrees C. The lateral mobility of lipids in L(o) domains was around eightfold lower compared to those in the L(d) phase, whereas the rotational mobility decreased by a factor of 1.5. Burst-integrated steady-state anisotropy histograms, as well as anisotropy imaging, were used to visualize the rotational mobility of lipid probes in phase-separated bilayers. These experiments and fluorescence correlation spectroscopy measurements at different focal diameters indicated a heterogeneous microenvironment in the L(o) phase. Finally, we demonstrate the potential of the optoelectro setup to study the influence of lipid domains on the electrophysiological properties of ion channels. We found that the electrophysiological activity of gramicidin A (gA), a well-characterized ion-channel-forming peptide, was related to lipid-domain partitioning. During liquid-liquid phase separation, gA was largely excluded from L(o) domains. Simultaneously, the number of electrically active gA dimers increased due to the increased surface density of gA in the L(d) phase.


A New Method of Assessing Lipid Mixtures by 31P Magic-Angle Spinning NMR.

  • Dror E Warschawski‎ et al.
  • Biophysical journal‎
  • 2018‎

A variety of lipids that differ by their chains and headgroups are found in biomembranes. In addition to studying the overall membrane phase, determination of the structure, dynamics, and headgroup conformation of individual lipids in the mixture would be of great interest. We have thus developed, to our knowledge, a new approach using solid-state 31P NMR, magic-angle spinning, and chemical-shift anisotropy (CSA) recoupling, using an altered version of the recoupling of chemical shift anisotropy (ROCSA) pulse sequence, here penned PROCSA. The resulting two-dimensional spectra allowed the simultaneous measurement of the isotropic chemical shift and CSA of each lipid headgroup, thus providing a valuable measure of its dynamics and structure. PROCSA was applied to mixtures of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) in various relative proportions, to mimic bacterial membranes and assess the respective roles of lipids in shaping these bilayers. The results were interpreted in terms of membrane topology, lipid propensity to adopt various phases or conformations, and lipid-lipid miscibility. Our results showed that PG dictates the lipid behavior when present in a proportion of 20 mol % or more. A small proportion of PG is thus able to impose a bilayer structure to the hexagonal phase forming PE. We discuss the requirement for lipids, such as PE, to be able to adopt non-bilayer phases in a membrane.


Nature of interaction between basic fibroblast growth factor and the antiangiogenic drug 7,7-(Carbonyl-bis[imino-N-methyl-4, 2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino] )bis-(1, 3-naphthalene disulfonate).

  • M Zamai‎ et al.
  • Biophysical journal‎
  • 1998‎

PNU145156E (7,7-(carbonyl-bis[imino-N-methyl-4, 2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino]) -bis-(1, 3-naphthalene disulfonate)) is a naphthalene sulfonic distamycin A derivative that interacts with heparin-binding growth factors. Because PNU145156E inhibits tumor angiogenesis, it was selected for clinical development. Picosecond time-resolved fluorescence emission and anisotropy were used to characterize the binding of PNU145156E to the basic fibroblast growth factor (a protein associated with tumor angiogenesis). A decrease in PNU145156E fluorescence lifetime was observed as a function of human basic fibroblast growth factor (bFGF) concentration. Nonlinear least-squares fitting of the binding isotherm yielded Kd = 145 nM for a single class of binding sites. Time-resolved anisotropy gave Kd = 174 nM. Kd = 150 nM was independently verified by quantitative high-performance affinity chromatography. The displaced volume of the complex, calculated from its rotational correlation time, fitted a sphere of 1:1 stoichiometry. These results account for the formation of a tight yet reversible PNU145156E:bFGF complex. An evaluation of PNU145156E fluorescence lifetimes in various solvents has highlighted the forces involved in stabilizing the complex. These are mostly electrostatic-hydrophobic in nature, with a relatively low contribution from hydrogen bonding. Both polar and nonpolar groups are involved on the protein-binding site within a largely hydrophobic cleft. A potential binding trajectory, based on a combination of these results with site-directed chemical modification and known bFGF x-ray structure, is suggested.


Structural changes of yellow Cameleon domains observed by quantitative FRET analysis and polarized fluorescence correlation spectroscopy.

  • J W Borst‎ et al.
  • Biophysical journal‎
  • 2008‎

Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of FRET. However, these lifetimes may originate from interacting and noninteracting molecules, which hampers quantitative interpretation of FRET data. We describe a methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET. The large advantage of this method, as compared to donor fluorescence quenching method used more commonly, is that the transfer rate of FRET can be determined accurately even in cases where the FRET efficiencies approach 100% yielding highly quenched donor fluorescence. Subsequently, the relative orientation between donor and acceptor chromophores is obtained from time-dependent fluorescence anisotropy measurements carried out under identical conditions of donor excitation and acceptor detection. The FRET based calcium sensor Yellow Cameleon 3.60 (YC3.60) was used because it changes its conformation on calcium binding, thereby increasing the FRET efficiency. After mapping distances and orientation angles between the FRET moieties in YC3.60, cartoon models of this FRET sensor with and without calcium could be created. Independent support for these representations came from experiments where the hydrodynamic properties of YC3.60 under ensemble and single-molecule conditions on selective excitation of the acceptor were determined. From rotational diffusion times as found by fluorescence correlation spectroscopy and consistently by fluorescence anisotropy decay analysis it could be concluded that the open structure (without calcium) is flexible as opposed to the rather rigid closed conformation. The combination of two independent methods gives consistent results and presents a rapid and specific methodology to analyze structural and dynamical changes in a protein on ligand binding.


Myosin Clusters of Finite Size Develop Contractile Stress in 1D Random Actin Arrays.

  • Boris Y Rubinstein‎ et al.
  • Biophysical journal‎
  • 2017‎

Myosin-powered force generation and contraction in nonmuscle cells underlies many cell biological processes and is based on contractility of random actin arrays. This contractility must rely on a microscopic asymmetry, the precise mechanism of which is not completely clear. A number of models of mechanical and structural asymmetries in actomyosin contraction have been posited. Here, we examine a contraction mechanism based on a finite size of myosin clusters and anisotropy of force generation by myosin heads at the ends of the myosin clusters. We use agent-based numerical simulations to demonstrate that if average lengths of actin filaments and myosin clusters are similar, then the proposed microscopic asymmetry leads to effective contraction of random 1D actomyosin arrays. We discuss the model's implication for mechanics of contractile rings and stress fibers.


Calcium transients and the effect of a photolytically released calcium chelator during electrically induced contractions in rabbit rectococcygeus smooth muscle.

  • A Arner‎ et al.
  • Biophysical journal‎
  • 1998‎

Intracellular Ca2+ was determined with the fura-2 technique during electrically induced contractions in the rabbit rectococcygeus smooth muscle at 22 degreesC. The muscles were electrically activated to give short, reproducible contractions. Intracellular [Ca2+] increased during activation; the increase in [Ca2+] preceded force development by approximately 2 s. After cessation of stimulation Ca2+ fell, preceding the fall in force by approximately 4 s. The fluorescence properties of fura-2 were determined with time-resolved spectroscopy using synchrotron light at the MAX-storage ring, Lund, Sweden. The fluorescence decay of free fura-2 was best described by two exponential decays (time constants approximately 0.5 and 1.5 ns) at low Ca2+ (pCa 9). At high Ca2+ (pCa 4.5), fluorescence decay became slower and could be fitted by one exponential decay (1.9 ns). Time-resolved anisotropy of free fura-2 was characteristic of free rotational motion (correlation time 0.3 ns). Motion of fura-2 could be markedly inhibited by high concentrations of creatine kinase. Time-resolved spectroscopy measurements of muscle fibers loaded with fura-2 showed that the fluorescence lifetime of the probe was longer, suggesting an influence of the chemical environment. Anisotropy measurements revealed, however, that the probe was mobile in the cells. The Ca2+-dependence of contraction and relaxation was studied using a photolabile calcium chelator, diazo-2, which could be loaded into the muscle cells in a similar manner as fura-2. Photolysis of diazo-2 leads to an increase in its Ca2+-affinity and a fall in free Ca2+. When muscles that had been loaded with diazo-2 were illuminated with UV light flashes during the rising phase of contraction, the rate of contraction became slower, suggesting a close relation between intracellular Ca2+ and the cross-bridge interaction. In contrast, photolysis during relaxation did not influence the rate of force decay, suggesting that relaxation of these contractions is not determined by the rate of Ca2+ removal or due to an increased Ca2+ sensitivity, but instead is limited by other processes such as deactivation by dephosphorylation or detachment of tension-bearing cross-bridges, possibly regulated by thin filament systems.


Ellipsoid Localization Microscopy Infers the Size and Order of Protein Layers in Bacillus Spore Coats.

  • Julia Manetsberger‎ et al.
  • Biophysical journal‎
  • 2015‎

Multilayered protein coats are crucial to the dormancy, robustness, and germination of bacterial spores. In Bacillus subtilis spores, the coat contains over 70 distinct proteins. Identifying which proteins reside in each layer may provide insight into their distinct functions. We present image analysis methods that determine the order and geometry of concentric protein layers by fitting a model description for a spheroidal fluorescent shell image to optical micrographs of spores incorporating fluorescent fusion proteins. The radius of a spherical protein shell can be determined with <10 nm error by fitting an equation to widefield fluorescence micrographs. Ellipsoidal shell axes can be fitted with comparable precision. The layer orders inferred for B. subtilis and B. megaterium are consistent with measurements in the literature. The aspect ratio of elongated spores and the tendency of some proteins to localize near their poles can be quantified, enabling measurement of structural anisotropy.


Radial pair correlation of molecular brightness fluctuations maps protein diffusion as a function of oligomeric state within live-cell nuclear architecture.

  • Ashleigh Solano‎ et al.
  • Biophysical journal‎
  • 2022‎

Nuclear proteins can modulate their DNA binding activity and the exploration volume available during DNA target search by self-associating into higher-order oligomers. Directly tracking this process in the nucleoplasm of a living cell is, however, a complex task. Thus, here we present a microscopy method based on radial pair correlation of molecular brightness fluctuations (radial pCOMB) that can extract the mobility of a fluorescently tagged nuclear protein as a function of its oligomeric state and spatiotemporally map the anisotropy of this parameter with respect to nuclear architecture. By simply performing a rapid frame scan acquisition, radial pCOMB has the capacity to detect, within each pixel, protein oligomer formation and the size-dependent obstruction nuclear architecture imparts on this complex's transport across sub-micrometer distances. From application of radial pCOMB to an oligomeric transcription factor and DNA repair protein, we demonstrate that homo-oligomer formation differentially regulates chromatin accessibility and interaction with the DNA template.


Pressure effects on the lateral distribution of cholesterol in lipid bilayers: a time-resolved spectroscopy study.

  • P Tauc‎ et al.
  • Biophysical journal‎
  • 1998‎

The effects of hydrostatic pressure and temperature on the phase behavior and physical properties of the binary mixture palmitoyloleoylphosphatidylcholine/cholesterol, over the 0-40 molar % range of cholesterol compositions, were determined from the changes in the fluorescence lifetime distribution and anisotropy decay parameters of the natural lipid trans-parinaric acid (t-PnA). Pressurized samples were excited with a Ti-sapphire subpicosecond laser, and fluorescence decays were analyzed by the quantified maximum entropy method. Above the transition temperature (T(T) = -5 degrees C), at atmospheric pressure, two liquid-crystalline phases, alpha and beta, are formed in this system. At each temperature and cholesterol concentration below the transition pressure, the fluorescence lifetime distribution pattern of t-PnA was clearly modulated by the pressure changes. Pressure increased the fraction of the liquid-ordered beta-phase and its order parameter, but it decreased the amount of cholesterol in this phase. Palmitoyloleoylphosphatidylcholine/cholesterol phase diagrams were also determined as a function of temperature and hydrostatic pressure.


Conformational changes in actin filaments induced by formin binding to the barbed end.

  • Gábor Papp‎ et al.
  • Biophysical journal‎
  • 2006‎

Formins bind actin filaments and play an essential role in the regulation of the actin cytoskeleton. In this work we describe details of the formin-induced conformational changes in actin filaments by fluorescence-lifetime and anisotropy-decay experiments. The results show that the binding of the formin homology 2 domain of a mammalian formin (mouse mDia1) to actin filaments resulted in a less rigid protein structure in the microenvironment of the Cys374 of actin, weakening of the interactions between neighboring actin protomers, and greater overall flexibility of the actin filaments. The formin effect is smaller at greater ionic strength. The results show that formin binding to the barbed end of actin filaments is responsible for the increase of flexibility of actin filaments. One formin dimer can affect the dynamic properties of an entire filament. Analyses of the results obtained at various formin/actin concentration ratios indicate that at least 160 actin protomers are affected by the binding of a single formin dimer to the barbed end of a filament.


Effect of tropomyosin on formin-bound actin filaments.

  • Zoltán Ujfalusi‎ et al.
  • Biophysical journal‎
  • 2009‎

Formins are conservative proteins with important roles in the regulation of the microfilament system in eukaryotic cells. Previous studies showed that the binding of formins to actin made the structure of actin filaments more flexible. Here, the effects of tropomyosin on formin-induced changes in actin filaments were investigated using fluorescence spectroscopic methods. The temperature dependence of the Förster-type resonance energy transfer showed that the formin-induced increase of flexibility of actin filaments was diminished by the binding of tropomyosin to actin. Fluorescence anisotropy decay measurements also revealed that the structure of flexible formin-bound actin filaments was stabilized by the binding of tropomyosin. The stabilizing effect reached its maximum when all binding sites on actin were occupied by tropomyosin. The effect of tropomyosin on actin filaments was independent of ionic strength, but became stronger as the magnesium concentration increased. Based on these observations, we propose that in cells there is a molecular mechanism in which tropomyosin binding to actin plays an important role in forming mechanically stable actin filaments, even in the case of formin-induced rapid filament assembly.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: